論文の概要: NLP Research and Resources at DaSciM, Ecole Polytechnique
- arxiv url: http://arxiv.org/abs/2112.00566v1
- Date: Wed, 1 Dec 2021 15:34:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 17:38:01.989620
- Title: NLP Research and Resources at DaSciM, Ecole Polytechnique
- Title(参考訳): DaSciM, Ecole PolytechniqueにおけるNLP研究と資源
- Authors: Hadi Abdine, Yanzhu Guo, Moussa Kamal Eddine, Giannis Nikolentzos,
Stamatis Outsios, Guokan Shang, Christos Xypolopoulos, Michalis Vazirgiannis
- Abstract要約: 2013年に設立されたEcole PolytechniqueのLIXの一部であるDaSciMは、機械学習とディープラーニングの手法による大規模データ分析の分野での研究結果を生み出している。
このグループは特にNLPやテキストマイニングの分野で活動しており、方法論や資源レベルで興味深い結果を得ている。
- 参考スコア(独自算出の注目度): 18.475867395475696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DaSciM (Data Science and Mining) part of LIX at Ecole Polytechnique,
established in 2013 and since then producing research results in the area of
large scale data analysis via methods of machine and deep learning. The group
has been specifically active in the area of NLP and text mining with
interesting results at methodological and resources level. Here follow our
different contributions of interest to the AFIA community.
- Abstract(参考訳): 2013年に設立されたEcole PolytechniqueのLIXの一部であるDaSciM(Data Science and Mining)は、機械学習とディープラーニングの手法による大規模データ分析の分野での研究結果を生み出した。
このグループは特にNLPやテキストマイニングの分野で活動しており、方法論や資源レベルで興味深い結果を得ている。
ここでは、AFIAコミュニティに対する関心の異なるコントリビューションに従います。
関連論文リスト
- Enhancing literature review with LLM and NLP methods. Algorithmic trading case [0.0]
本研究では,機械学習アルゴリズムを用いて,アルゴリズム取引分野の知識を分析し,整理する。
1956年から2020年の第1四半期にかけて、1億3600万件の研究論文のデータセットをフィルタリングして14,342件の関連記事を特定した。
論文 参考訳(メタデータ) (2024-10-23T13:37:27Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
SciRIFF(Scientific Resource for Instruction-Following and Finetuning, SciRIFF)は、54のタスクに対して137Kの命令追従デモのデータセットである。
SciRIFFは、幅広い科学分野の研究文献から情報を抽出し、合成することに焦点を当てた最初のデータセットである。
論文 参考訳(メタデータ) (2024-06-10T21:22:08Z) - Exploring the Landscape of Natural Language Processing Research [3.3916160303055567]
NLP関連のいくつかのアプローチが研究コミュニティで調査されている。
確立したトピックを分類し、傾向を特定し、今後の研究分野を概説する総合的研究はいまだに残っていない。
その結果,NLPにおける研究分野の分類,最近のNLPの発展分析,研究成果の要約,今後の研究の方向性について概説した。
論文 参考訳(メタデータ) (2023-07-20T07:33:30Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-22T11:08:00Z) - A Review of Off-Policy Evaluation in Reinforcement Learning [72.82459524257446]
主に、強化学習における最も基本的なトピックの1つである、オフ・ポリシー評価(OPE)に焦点を当てています。
我々は,OPEの効率バウンダリ,既存のOPE手法のいくつか,その統計的性質,その他の研究方向について論じる。
論文 参考訳(メタデータ) (2022-12-13T03:38:57Z) - Comparative Study of Sentiment Analysis for Multi-Sourced Social Media
Platforms [0.0]
本稿では,レキシコンベース,機械学習,ディープラーニングの手法を用いた比較分析を行う。
私たちが使ったデータセットは、TwitterやRedditなど、さまざまなソーシャルネットワークサイトのコメントセクションからのマルチソースデータセットでした。
論文 参考訳(メタデータ) (2022-12-09T06:33:49Z) - Efficient Methods for Natural Language Processing: A Survey [76.34572727185896]
本研究は, 効率的なNLPにおける現在の手法と知見を合成し, 関連づけるものである。
我々は,限られた資源下でNLPを実施するためのガイダンスと,より効率的な手法を開発するための有望な研究方向性の両立を目指す。
論文 参考訳(メタデータ) (2022-08-31T20:32:35Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - An Empirical Survey of Data Augmentation for Limited Data Learning in
NLP [88.65488361532158]
豊富なデータへの依存は、低リソース設定や新しいタスクにNLPモデルを適用するのを防ぐ。
NLPにおけるデータ効率を改善する手段として,データ拡張手法が検討されている。
限定ラベル付きデータ設定におけるNLPのデータ拡張に関する最近の進展を実証的に調査する。
論文 参考訳(メタデータ) (2021-06-14T15:27:22Z) - Deep Learning for Political Science [0.0]
機械学習、ディープラーニング、自然言語処理(NLP)、そしてより一般的には、人工知能(AI)が理論をテストする新しい機会を開きつつある。
政治科学は伝統的に、投票行動、政策決定、国際紛争、国際開発などの分野の研究に計算手法を用いてきた。
本章では政治学の例を例に紹介する。
論文 参考訳(メタデータ) (2020-05-13T19:14:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。