論文の概要: ProtGNN: Towards Self-Explaining Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2112.00911v1
- Date: Thu, 2 Dec 2021 01:16:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-04 06:00:01.485536
- Title: ProtGNN: Towards Self-Explaining Graph Neural Networks
- Title(参考訳): ProtGNN: 自己説明型グラフニューラルネットワークを目指して
- Authors: Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, Cheekong Lee
- Abstract要約: 本稿では,プロトタイプ学習とGNNを組み合わせたプロトタイプグラフニューラルネットワーク(ProtGNN)を提案する。
ProtGNNとProtGNN+は、非解釈不能のものと同等の精度を保ちながら、本質的に解釈可能である。
- 参考スコア(独自算出の注目度): 12.789013658551454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent progress in Graph Neural Networks (GNNs), it remains
challenging to explain the predictions made by GNNs. Existing explanation
methods mainly focus on post-hoc explanations where another explanatory model
is employed to provide explanations for a trained GNN. The fact that post-hoc
methods fail to reveal the original reasoning process of GNNs raises the need
of building GNNs with built-in interpretability. In this work, we propose
Prototype Graph Neural Network (ProtGNN), which combines prototype learning
with GNNs and provides a new perspective on the explanations of GNNs. In
ProtGNN, the explanations are naturally derived from the case-based reasoning
process and are actually used during classification. The prediction of ProtGNN
is obtained by comparing the inputs to a few learned prototypes in the latent
space. Furthermore, for better interpretability and higher efficiency, a novel
conditional subgraph sampling module is incorporated to indicate which part of
the input graph is most similar to each prototype in ProtGNN+. Finally, we
evaluate our method on a wide range of datasets and perform concrete case
studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent
interpretability while achieving accuracy on par with the non-interpretable
counterparts.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の最近の進歩にもかかわらず、GNNによる予測を説明するのは難しい。
既存の説明手法は主に、訓練されたgnnの説明を提供するために別の説明モデルが使用されるポストホックな説明に焦点を当てている。
ポストホックメソッドがGNNの元々の推論プロセスを明らかにしないという事実は、ビルトインの解釈性を備えたGNNを構築する必要性を高める。
本稿では,プロトタイプ学習とGNNを組み合わせたPrototype Graph Neural Network(ProtGNN)を提案する。
ProtGNNでは、説明はケースベースの推論プロセスから自然に導き出され、実際に分類に使われている。
ProtGNNの予測は、入力を潜伏空間におけるいくつかの学習されたプロトタイプと比較することによって得られる。
さらに,解釈性の向上と高効率化のために,入力グラフのどの部分がProtGNN+のプロトタイプと最もよく似ているかを示す条件付きサブグラフサンプリングモジュールが組み込まれている。
最後に,本手法を幅広いデータセット上で評価し,具体的な事例研究を行う。
以上の結果から,ProtGNNとProtGNN+は,非解釈不能のものと同等に精度を保ちながら,本質的に解釈可能であることが示された。
関連論文リスト
- Incorporating Retrieval-based Causal Learning with Information
Bottlenecks for Interpretable Graph Neural Networks [12.892400744247565]
我々は,検索に基づく因果学習をグラフ情報ボットネック(GIB)理論に組み込んだ,解釈可能な因果GNNフレームワークを開発した。
多様な説明型を持つ実世界の説明シナリオにおいて,32.71%の精度を達成する。
論文 参考訳(メタデータ) (2024-02-07T09:57:39Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
本稿では、P(ropagational)MLPと呼ばれる中間モデルクラスを導入することにより、GNNの性能向上を本質的な能力に向ける。
PMLPは、トレーニングにおいてはるかに効率的でありながら、GNNと同等(あるいはそれ以上)に動作することを観察する。
論文 参考訳(メタデータ) (2022-12-18T08:17:32Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
本稿では,プロトタイプベースの自己説明可能なGNNを学習し,正確な予測とプロトタイプベースの予測説明を同時に行うという,新たな課題について考察する。
学習したプロトタイプは、テストインスタンスの予測とインスタンスレベルの説明を同時に行うためにも使用される。
論文 参考訳(メタデータ) (2022-10-05T00:47:42Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
グラフ強化グラフニューラルネットワーク(SGNN)は,GNNの表現力を高めるために導入された。
本稿では, GNN の最近の解説者の一つである PGExplainer を SGNN に適用する。
本稿では,グラフ分類タスクにおけるSGNNの決定過程を説明することに成功していることを示す。
論文 参考訳(メタデータ) (2022-09-16T13:39:10Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
本稿では,異なるグラフニューラルネットワーク(GNN)に対して,メッセージパッシング方式であるGNNInterpreterに従うモデルに依存しないモデルレベルの説明手法を提案する。
GNNInterpreterは、GNNが検出しようとする最も識別性の高いグラフパターンを生成する確率的生成グラフ分布を学習する。
既存の研究と比較すると、GNNInterpreterはノードとエッジの異なるタイプの説明グラフを生成する際に、より柔軟で計算的に効率的である。
論文 参考訳(メタデータ) (2022-09-15T07:45:35Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。