論文の概要: Data-Driven Interaction Analysis of Line Failure Cascading in Power Grid
Networks
- arxiv url: http://arxiv.org/abs/2112.01061v1
- Date: Thu, 2 Dec 2021 09:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 16:42:00.989058
- Title: Data-Driven Interaction Analysis of Line Failure Cascading in Power Grid
Networks
- Title(参考訳): 電力グリッドネットワークにおけるライン故障カスケードのデータ駆動相互作用解析
- Authors: Abdorasoul Ghasemi (1,2) and Holger Kantz (2) ((1) K. N. Toosi
University of Technology, Tehran, Iran, (2) Max Planck Institute for Physics
of Complex Systems, Dresden, Germany)
- Abstract要約: パワーグリッドネットワークにおける障害カスケードのラインインタラクションをモデル化するために、機械学習ツールを使用します。
まず、最初のランダムな故障の後、連続するライン障害を再現した軌跡のデータセットを収集する。
次に、モデルパワーネットワークにおける実際の制約を、システムが安定した状態に収まるまで検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use machine learning tools to model the line interaction of failure
cascading in power grid networks. We first collect data sets of simulated
trajectories of possible consecutive line failure following an initial random
failure and considering actual constraints in a model power network until the
system settles at a steady state. We use weighted $l_1$-regularized logistic
regression-based models to find static and dynamic models that capture pairwise
and latent higher-order lines' failure interactions using pairwise statistical
data. The static model captures the failures' interactions near the steady
states of the network, and the dynamic model captures the failure unfolding in
a time series of consecutive network states. We test models over independent
trajectories of failure unfolding in the network to evaluate their failure
predictive power. We observe asymmetric, strongly positive, and negative
interactions between different lines' states in the network. We use the static
interaction model to estimate the distribution of cascade size and identify
groups of lines that tend to fail together, and compare against the data. The
dynamic interaction model successfully predicts the network state for
long-lasting failure propagation trajectories after an initial failure.
- Abstract(参考訳): パワーグリッドネットワークにおける障害カスケードのラインインタラクションをモデル化するために、機械学習ツールを使用します。
まず,初期ランダム故障後の連行障害のシミュレーショントラジェクタのデータセットを収集し,システムが定常状態になるまでモデル電力ネットワーク内の実際の制約を検討する。
重み付き$l_1$-regularized logistic regression-based modelを使用して、ペアワイズおよび潜在高次ラインの障害相互作用をペアワイズ統計データを用いてキャプチャする静的および動的モデルを見つける。
静的モデルはネットワークの定常状態に近い障害の相互作用をキャプチャし、動的モデルは連続したネットワーク状態の時系列で展開する障害をキャプチャする。
ネットワークに展開する障害の独立した軌道上でモデルをテストし、その障害予測能力を評価する。
ネットワーク内の異なる線の状態間の非対称、強正、負の相互作用を観察する。
静的相互作用モデルを用いてカスケードサイズの分布を推定し、一緒に失敗する傾向にあるライン群を特定し、データと比較する。
動的相互作用モデルは、初期故障後の長寿命故障伝播軌道のネットワーク状態をうまく予測する。
関連論文リスト
- Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Power Failure Cascade Prediction using Graph Neural Networks [4.667031410586657]
本稿では,初期コンテンジェンシーと電力注入値が与えられたカスケードプロセスの各世代におけるグリッド状態を予測するフローフリーモデルを提案する。
提案モデルにより,計算時間をほぼ2桁に短縮できることを示す。
論文 参考訳(メタデータ) (2024-04-24T18:45:50Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
埋め込みは観察によく適合するが、同時に誤った動的挙動を持つモデルを誘導することを示す。
2つの加法的ベクトル場成分をパラメトリした単純な埋め込み自由な代替法を提案する。
論文 参考訳(メタデータ) (2023-05-20T12:41:47Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Predicting Dynamic Stability from Static Features in Power Grid Models
using Machine Learning [0.0]
本稿では,ネットワーク科学のメトリクスと機械学習モデルを組み合わせて,非同期イベントのリスクを予測する。
我々は、複数の合成試験格子からシミュレーションデータを用いて、そのようなモデルを訓練し、テストする。
統合モデルでは,すべてのデータセットを平均化した場合の平均精度が0.996$以上のデシンクロナイゼーションイベントを予測できることがわかった。
論文 参考訳(メタデータ) (2022-10-17T17:16:48Z) - Regularized Sequential Latent Variable Models with Adversarial Neural
Networks [33.74611654607262]
逐次データの変動をモデル化するために,RNN で高レベル潜時確率変数を使用する方法を提案する。
変動RNNモデルの学習に逆法を用いる可能性を探る。
論文 参考訳(メタデータ) (2021-08-10T08:05:14Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Context-dependent self-exciting point processes: models, methods, and
risk bounds in high dimensions [21.760636228118607]
高次元自己回帰ポイントプロセスは、現在のイベントが、ソーシャルネットワークの1人のメンバーによる活動のような将来の出来事を誘発または抑制する方法をモデル化する。
我々は、機械学習における合成時系列と正規化手法のアイデアを活用し、高次元マークポイントプロセスのネットワーク推定を行う。
論文 参考訳(メタデータ) (2020-03-16T20:22:43Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。