論文の概要: Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases
- arxiv url: http://arxiv.org/abs/2112.01503v1
- Date: Thu, 2 Dec 2021 18:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 15:07:07.005999
- Title: Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases
- Title(参考訳): 冠動脈疾患予測のための機械学習に基づく分類アルゴリズム
- Authors: Kelvin Kwakye, Emmanuel Dadzie
- Abstract要約: この研究は、いくつかの機械学習に基づく分類モデルを作成し、テストした。
その結果、ロジスティック回帰は、元のデータセット上で最高のパフォーマンススコアを生み出した。
結論として,順調に処理され,標準化されたデータセット上のLRが,他のアルゴリズムよりも精度の高い冠状心疾患を予測できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary heart disease, which is a form of cardiovascular disease (CVD), is
the leading cause of death worldwide. The odds of survival are good if it is
found or diagnosed early. The current report discusses a comparative approach
to the classification of coronary heart disease datasets using machine learning
(ML) algorithms. The current study created and tested several
machine-learning-based classification models. The dataset was subjected to
Smote to handle unbalanced classes and feature selection technique in order to
assess the impact on two distinct performance metrics. The results show that
logistic regression produced the highest performance score on the original
dataset compared to the other algorithms employed. In conclusion, this study
suggests that LR on a well-processed and standardized dataset can predict
coronary heart disease with greater accuracy than the other algorithms.
- Abstract(参考訳): 冠動脈疾患は心臓血管疾患(CVD)の一形態であり、世界中で死因となっている。
早期に発見または診断した場合、生存確率は良好である。
本報告では,機械学習(ML)アルゴリズムを用いた冠動脈疾患データセットの分類について比較検討する。
この研究は、いくつかの機械学習に基づく分類モデルを作成し、テストした。
データセットは2つの異なるパフォーマンス指標への影響を評価するために、バランスの取れていないクラスと特徴選択テクニックを扱うためにSmoteの対象とされた。
その結果、ロジスティック回帰は、他のアルゴリズムと比較して、元のデータセットで最高のパフォーマンススコアが得られた。
結論として,順に処理され,標準化されたデータセット上のLRが,他のアルゴリズムよりも精度の高い冠状心疾患を予測できることが示唆された。
関連論文リスト
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms [0.0]
本稿では,最も顕著な機械学習アルゴリズムと,オントロジーに基づく機械学習分類を比較し,レビューする。
これらの結果は, F-Measure, Accuracy, Recall, Precision などの混乱行列から生成された評価値を用いて評価した。
論文 参考訳(メタデータ) (2024-05-30T18:40:27Z) - Comparison of Machine Learning Classification Algorithms and Application
to the Framingham Heart Study [0.0]
医療における機械学習アルゴリズムの使用は、社会的不正と健康上の不平等を増幅することができる。
本研究は,機械学習分類アルゴリズムの開発と展開後における一般化可能性障害に関するものである。
論文 参考訳(メタデータ) (2024-02-22T22:49:35Z) - Ensemble Framework for Cardiovascular Disease Prediction [0.0]
心臓病は、世界中でコミュニケーション不能で無音な死の主な原因である。
我々は,ExtraTrees,Random Forest,XGBoostなど,複数の機械学習アルゴリズムを用いたアンサンブルを組み込んだフレームワークを提案している。
提案手法は,既存の文献よりも高い92.34%の精度を実現した。
論文 参考訳(メタデータ) (2023-06-16T17:37:43Z) - An Improved Heart Disease Prediction Using Stacked Ensemble Method [0.9187159782788579]
機械学習を用いた心疾患予測システムを構築した。
心臓疾患のある人と正常な人とを簡単に区別することができる。
論文 参考訳(メタデータ) (2023-04-12T17:53:59Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy
Medical Imaging [67.02500668641831]
ノイズの多いデータセットでトレーニングされたディープラーニングモデルは、ノイズタイプに敏感であり、目に見えないサンプルの一般化が少なくなる。
本稿では,複数の情報源からトピックを学習する概念を模倣したロバスト知識蒸留(RoS-KD)フレームワークを提案する。
RoS-KDは、訓練データの重複する部分集合について訓練された複数の教師から知識を蒸留することにより、滑らかで、よく表現された、堅牢な学生多様体を学習する。
論文 参考訳(メタデータ) (2022-10-15T22:32:20Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。