Quantum speed limit and stability of coherent states in quantum gravity
- URL: http://arxiv.org/abs/2112.01597v2
- Date: Tue, 21 Jun 2022 13:18:20 GMT
- Title: Quantum speed limit and stability of coherent states in quantum gravity
- Authors: Klaus Liegener, {\L}ukasz Rudnicki
- Abstract summary: We investigate the dynamical properties of coherent states for Loop Quantum Gravity.
The Quantum Speed Limit is adapted to Quantum Gravity, yielding consistency checks for any proposal of stable families of states.
We report the variance of this constraint evaluated on a family of coherent states showing that, for short times, this family passes the Quantum Speed Limit test.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing the program of expectation values in coherent states and its
recently developed algorithmic tools, this letter investigates the dynamical
properties of cosmological coherent states for Loop Quantum Gravity. To this
end, the Quantum Speed Limit is adapted to Quantum Gravity, yielding necessary
consistency checks for any proposal of stable families of states. To showcase
the strength of the developed tools, they are applied to a prominent model: the
Euclidean part of the quantum scalar constraint. We report the variance of this
constraint evaluated on a family of coherent states showing that, for short
times, this family passes the Quantum Speed Limit test, allowing the transition
from one coherent state to another one.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - State Preparation in a Jaynes-Cummings Lattice with Quantum Optimal
Control [2.8063310156671477]
We study a quantum optimal control (QOC) approach for fast generation of quantum ground states in a finite-sized Jaynes-Cummings lattice with unit filling.
Our result shows that the QOC approach can generate quantum many-body states with high fidelity when the evolution time is above a threshold time.
arXiv Detail & Related papers (2023-06-21T01:44:57Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Quantum Speed Limit under Brachistochrone Evolution [0.0]
We propose a geometrical approach to derive a quantum speed limit (QSL) bound for closed and open quantum systems.
We show that the QSL between a given initial state to a final state is determined not only by the entire dynamics of the system but also by the individual dynamics of a critical parameter.
arXiv Detail & Related papers (2022-07-30T14:30:01Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Demonstration of quantum brachistochrones between distant states of an
atom [0.0]
We show fast coherent transport of an atomic wave packet over a distance of 15 times its size.
Results shed light upon a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
arXiv Detail & Related papers (2020-09-04T15:00:11Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.