Heuristic Search Planning with Deep Neural Networks using Imitation,
Attention and Curriculum Learning
- URL: http://arxiv.org/abs/2112.01918v1
- Date: Fri, 3 Dec 2021 14:01:16 GMT
- Title: Heuristic Search Planning with Deep Neural Networks using Imitation,
Attention and Curriculum Learning
- Authors: Leah Chrestien, Tomas Pevny, Antonin Komenda, Stefan Edelkamp
- Abstract summary: This paper presents a network model to learn a capable of relating relating to distant parts of the state space via optimal plan imitation.
To counter the limitation of the method in the creation of problems of increasing difficulty, we demonstrate the use of curriculum learning, where newly solved problem instances are added to the training set.
- Score: 1.0323063834827413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning a well-informed heuristic function for hard task planning domains is
an elusive problem. Although there are known neural network architectures to
represent such heuristic knowledge, it is not obvious what concrete information
is learned and whether techniques aimed at understanding the structure help in
improving the quality of the heuristics. This paper presents a network model to
learn a heuristic capable of relating distant parts of the state space via
optimal plan imitation using the attention mechanism, which drastically
improves the learning of a good heuristic function. To counter the limitation
of the method in the creation of problems of increasing difficulty, we
demonstrate the use of curriculum learning, where newly solved problem
instances are added to the training set, which, in turn, helps to solve
problems of higher complexities and far exceeds the performances of all
existing baselines including classical planning heuristics. We demonstrate its
effectiveness for grid-type PDDL domains.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - Learning Good Features to Transfer Across Tasks and Domains [16.05821129333396]
We first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a given domain.
Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen domains.
arXiv Detail & Related papers (2023-01-26T18:49:39Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Structure preserving deep learning [1.2263454117570958]
deep learning has risen to the foreground as a topic of massive interest.
There are multiple challenging mathematical problems involved in applying deep learning.
A growing effort to mathematically understand the structure in existing deep learning methods.
arXiv Detail & Related papers (2020-06-05T10:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.