Intelligent Trading Systems: A Sentiment-Aware Reinforcement Learning
Approach
- URL: http://arxiv.org/abs/2112.02095v1
- Date: Sun, 14 Nov 2021 16:30:45 GMT
- Title: Intelligent Trading Systems: A Sentiment-Aware Reinforcement Learning
Approach
- Authors: Francisco Caio Lima Paiva, Leonardo Kanashiro Felizardo, Reinaldo
Augusto da Costa Bianchi and Anna Helena Reali Costa
- Abstract summary: We propose the Sentiment-Aware RL (SentARL) intelligent trading system that improves profit stability by leveraging market mood.
We show that SentARL's consistent effectiveness against baselines is outstanding.
- Score: 11.09729362243947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The feasibility of making profitable trades on a single asset on stock
exchanges based on patterns identification has long attracted researchers.
Reinforcement Learning (RL) and Natural Language Processing have gained
notoriety in these single-asset trading tasks, but only a few works have
explored their combination. Moreover, some issues are still not addressed, such
as extracting market sentiment momentum through the explicit capture of
sentiment features that reflect the market condition over time and assessing
the consistency and stability of RL results in different situations. Filling
this gap, we propose the Sentiment-Aware RL (SentARL) intelligent trading
system that improves profit stability by leveraging market mood through an
adaptive amount of past sentiment features drawn from textual news. We
evaluated SentARL across twenty assets, two transaction costs, and five
different periods and initializations to show its consistent effectiveness
against baselines. Subsequently, this thorough assessment allowed us to
identify the boundary between news coverage and market sentiment regarding the
correlation of price-time series above which SentARL's effectiveness is
outstanding.
Related papers
- Reinforcement Learning Framework for Quantitative Trading [0.0]
There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities.
This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators.
arXiv Detail & Related papers (2024-11-12T06:44:28Z) - Deviations from the Nash equilibrium and emergence of tacit collusion in a two-player optimal execution game with reinforcement learning [0.9208007322096533]
We study a scenario in which two autonomous agents learn to liquidate the same asset optimally in the presence of market impact.
Our results show that the strategies learned by the agents deviate significantly from the Nash equilibrium of the corresponding market impact game.
We explore how different levels of market volatility influence the agents' performance and the equilibria they discover.
arXiv Detail & Related papers (2024-08-21T16:54:53Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - LLMFactor: Extracting Profitable Factors through Prompts for Explainable Stock Movement Prediction [5.519288891583653]
We introduce a novel framework called LLMFactor to identify factors that influence stock movements.
Unlike previous methods that relied on keyphrases or sentiment analysis, this approach focuses on extracting factors more directly related to stock market dynamics.
Our framework directs the LLMs to create background knowledge through a fill-in-the-blank strategy and then discerns potential factors affecting stock prices from related news.
arXiv Detail & Related papers (2024-06-16T06:20:50Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
We develop a framework and algorithms for learning stable market outcomes under uncertainty.
Our work takes a first step toward elucidating when and how stable matchings arise in large, data-driven marketplaces.
arXiv Detail & Related papers (2021-08-19T17:59:28Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.