Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2506.13113v1
- Date: Mon, 16 Jun 2025 05:43:22 GMT
- Title: Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning
- Authors: Stella C. Dong, James R. Finlay,
- Abstract summary: This paper develops a novel multi-agent reinforcement learning (MARL) framework for reinsurance treaty bidding.<n>MARL agents achieve up to 15% higher underwriting profit, 20% lower tail risk, and over 25% improvement in Sharpe ratios.<n>These findings suggest that MARL offers a viable path toward more transparent, adaptive, and risk-sensitive reinsurance markets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a novel multi-agent reinforcement learning (MARL) framework for reinsurance treaty bidding, addressing long-standing inefficiencies in traditional broker-mediated placement processes. We pose the core research question: Can autonomous, learning-based bidding systems improve risk transfer efficiency and outperform conventional pricing approaches in reinsurance markets? In our model, each reinsurer is represented by an adaptive agent that iteratively refines its bidding strategy within a competitive, partially observable environment. The simulation explicitly incorporates institutional frictions including broker intermediation, incumbent advantages, last-look privileges, and asymmetric access to underwriting information. Empirical analysis demonstrates that MARL agents achieve up to 15% higher underwriting profit, 20% lower tail risk (CVaR), and over 25% improvement in Sharpe ratios relative to actuarial and heuristic baselines. Sensitivity tests confirm robustness across hyperparameter settings, and stress testing reveals strong resilience under simulated catastrophe shocks and capital constraints. These findings suggest that MARL offers a viable path toward more transparent, adaptive, and risk-sensitive reinsurance markets. The proposed framework contributes to emerging literature at the intersection of algorithmic market design, strategic bidding, and AI-enabled financial decision-making.
Related papers
- MARS: A Meta-Adaptive Reinforcement Learning Framework for Risk-Aware Multi-Agent Portfolio Management [7.740995234462868]
Reinforcement Learning has shown significant promise in automated portfolio management.<n>We propose Meta-controlled Agents for a Risk-aware System (MARS)<n>MARS employs a Heterogeneous Agent Ensemble where each agent possesses a unique, intrinsic risk profile.
arXiv Detail & Related papers (2025-08-02T03:23:41Z) - The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
Large Language Model (LLM) agents represent a promising shift in human-AI interaction.<n>We highlight a critical usability gap in high-demand, mass-market applications.
arXiv Detail & Related papers (2025-05-23T11:40:58Z) - Adaptive Insurance Reserving with CVaR-Constrained Reinforcement Learning under Macroeconomic Regimes [0.0]
This paper proposes a reinforcement learning (RL) framework for insurance reserving that integrates tail-risk sensitivity, macroeconomic regime modeling, and regulatory compliance.<n>The framework also accommodates fixed-shock stress testing and regime-stratified analysis, providing a principled and principled approach to reserving under uncertainty.
arXiv Detail & Related papers (2025-04-13T01:43:25Z) - A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning [0.0]
Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency.<n>Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions.<n>This paper introduces a novel hybrid framework that integrates generative models and reinforcement learning.
arXiv Detail & Related papers (2025-01-11T02:02:32Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.<n>Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.<n>We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - Insurance pricing on price comparison websites via reinforcement
learning [7.023335262537794]
This paper introduces reinforcement learning framework that learns optimal pricing policy by integrating model-based and model-free methods.
The paper also highlights the importance of evaluating pricing policies using an offline dataset in a consistent fashion.
arXiv Detail & Related papers (2023-08-14T04:44:56Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
We present a new monotonic improvement guarantee for optimizing decentralized policies in cooperative Multi-Agent Reinforcement Learning (MARL)
We show that a trust region constraint can be effectively enforced in a principled way by bounding independent ratios based on the number of agents in training.
arXiv Detail & Related papers (2022-01-31T20:39:48Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.