Smart IoT-Biofloc water management system using Decision regression tree
- URL: http://arxiv.org/abs/2112.02577v1
- Date: Sun, 5 Dec 2021 14:12:07 GMT
- Title: Smart IoT-Biofloc water management system using Decision regression tree
- Authors: Samsil Arefin Mozumder, A S M Sharifuzzaman Sagar
- Abstract summary: Biofloc technology turns traditional farming into a sophisticated infrastructure that enables the utilization of leftover food by turning it into bacterial biomass.
This article introduced a system that gathers data from sensors, store data in the cloud, analyses it using a machine learning model to predict the water condition, and provides real-time monitoring through an android app.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conventional fishing industry has several difficulties: water
contamination, temperature instability, nutrition, area, expense, etc. In fish
farming, Biofloc technology turns traditional farming into a sophisticated
infrastructure that enables the utilization of leftover food by turning it into
bacterial biomass. The purpose of our study is to propose an intelligent IoT
Biofloc system that improves efficiency and production. This article introduced
a system that gathers data from sensors, store data in the cloud, analyses it
using a machine learning model such as a Decision regression tree model to
predict the water condition, and provides real-time monitoring through an
android app. The proposed system has achieved a satisfactory accuracy of 79%
during the experiment.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
Climate change is intensifying extreme weather events, causing both water scarcity and severe rainfall unpredictability.
This paper aims to provide valuable insights for comprehensive water resource monitoring under diverse meteorological conditions.
arXiv Detail & Related papers (2024-01-05T18:11:08Z) - IoT-Based Environmental Control System for Fish Farms with Sensor
Integration and Machine Learning Decision Support [1.3499500088995464]
This research article showcases the power of data-driven decision support in fish farming.
It promises to meet the growing demand for seafood while emphasizing environmental responsibility and economic viability.
arXiv Detail & Related papers (2023-11-07T14:35:16Z) - Development of IoT Smart Greenhouse System for Hydroponic Gardens [0.0]
The SMART Greenhouse System for Hydroponic Garden is used as an alternative tool, solution, and innovation technique towards food shortages due to climate change, land shortages, and low farming environments.
The developed system was tested and evaluated to confirm its reliability, functions, and usability under ISO 9126 evaluation criteria.
The proponents highly suggest the use of solar energy for the pump power, prototype wiring should be improved, the usage of a high-end model of Arduino to address more sensors and devices for a larger arsenal of data collected, enclosures of the device to ensure safety, and mobile application updates such as bug fixes and have an
arXiv Detail & Related papers (2023-05-02T03:47:25Z) - IoT based Smart Water Quality Prediction for Biofloc Aquaculture [1.820324411024166]
Biofloc technology in aquaculture transforms the manual into an advanced system that allows the reuse of unused feed by converting them into microbial protein.
The article presented a system that collects data using sensors, analyzes them using a machine learning model, generates decisions with the help of Artificial Intelligence (AI) and sends notifications to the user.
arXiv Detail & Related papers (2022-07-27T03:00:48Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Classification of PS and ABS Black Plastics for WEEE Recycling
Applications [63.942632088208505]
This work is aimed at creating a system that can classify different types of plastics by using picture analysis, in particular, black plastics of the type Polystyrene (PS) and Acrylonitrile Butadiene Styrene (ABS)
A Convolutional Neural Network has been tested and retrained, obtaining a validation accuracy of 95%.
Using a separate test set, average accuracy goes down to 86.6%, but a further look at the results shows that the ABS type is correctly classified 100% of the time, so it is the PS type that accumulates all the errors.
arXiv Detail & Related papers (2021-10-20T12:47:18Z) - An artificial intelligence and Internet of things based automated
irrigation system [8.283810659689589]
Internet of things (IoT) devices has begun to be used in all areas.
Most of the operations and decisions about irrigation are carried out by people.
Data collected from IoT devices and sensors sent via communication channels and stored on MongoDB.
arXiv Detail & Related papers (2021-04-01T21:05:26Z) - Detection of Anomalies and Faults in Industrial IoT Systems by Data
Mining: Study of CHRIST Osmotron Water Purification System [15.06694204377327]
This article is about industrial pharmaceutical systems and more specifically, water purification systems.
Almost every pharmaceutical company has a water purifying unit as a part of its interdependent systems.
Early detection of faults right at the edge can significantly decrease maintenance costs and improve safety and output quality.
arXiv Detail & Related papers (2020-09-08T11:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.