論文の概要: Fusion Detection via Distance-Decay IoU and weighted Dempster-Shafer
Evidence Theory
- arxiv url: http://arxiv.org/abs/2112.03044v1
- Date: Mon, 6 Dec 2021 13:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 21:49:53.862053
- Title: Fusion Detection via Distance-Decay IoU and weighted Dempster-Shafer
Evidence Theory
- Title(参考訳): 距離デカイIoUと重み付きデンプスターシャファーエビデンス理論による核融合検出
- Authors: Fang Qingyun and Wang Zhaokui
- Abstract要約: 高速なマルチソース核融合検出フレームワークが提案されている。
ターゲットの形状特性を符号化するために、ユニオン上の新しい距離デカイ交叉を用いる。
重み付けされたデンプスター・シェーファーのエビデンス理論は、光学と合成開口レーダ検出を組み合わせたものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, increasing attentions are paid on object detection in remote
sensing imagery. However, traditional optical detection is highly susceptible
to illumination and weather anomaly. It is a challenge to effectively utilize
the cross-modality information from multi-source remote sensing images,
especially from optical and synthetic aperture radar images, to achieve all-day
and all-weather detection with high accuracy and speed. Towards this end, a
fast multi-source fusion detection framework is proposed in current paper. A
novel distance-decay intersection over union is employed to encode the shape
properties of the targets with scale invariance. Therefore, the same target in
multi-source images can be paired accurately. Furthermore, the weighted
Dempster-Shafer evidence theory is utilized to combine the optical and
synthetic aperture radar detection, which overcomes the drawback in
feature-level fusion that requires a large amount of paired data. In addition,
the paired optical and synthetic aperture radar images for container ship Ever
Given which ran aground in the Suez Canal are taken to demonstrate our fusion
algorithm. To test the effectiveness of the proposed method, on self-built data
set, the average precision of the proposed fusion detection framework
outperform the optical detection by 20.13%.
- Abstract(参考訳): 近年,リモートセンシング画像における物体検出に注目が集まっている。
しかし、従来の光学検出は照明や気象異常の影響を受けやすい。
マルチソースリモートセンシング画像、特に光学・合成開口レーダ画像からのクロスモダリティ情報を効果的に活用し、高精度・高速で全天候検出を実現することが課題である。
そこで本論文では,高速なマルチソース核融合検出フレームワークを提案する。
結合上の新しい距離デカイ交叉を用いて、スケール不変性を持つターゲットの形状特性を符号化する。
したがって、マルチソース画像における同じターゲットを正確にペアリングすることができる。
さらに、重み付きデンプスター・シェーファーエビデンス理論は、大量のペアデータを必要とする特徴レベルの融合の欠点を克服する光学的および合成開口レーダー検出を結合するために用いられる。
さらに,スエズ運河で座礁したコンテナ船の光学的および合成的開口レーダ画像を用いて,核融合アルゴリズムの実証を行った。
提案手法の有効性を検証するため,自己構築データセットを用いて,提案手法の核融合検出フレームワークの平均精度を20.13%向上させた。
関連論文リスト
- MAROON: A Framework for the Joint Characterization of Near-Field High-Resolution Radar and Optical Depth Imaging Techniques [4.816237933371206]
我々は、光学領域と電波領域の両方から深度イメージを特徴付けるというユニークな課題に挑戦する。
本研究では, 対象物, ジオメトリー, 物体間距離について, 深度測定の総合的な評価を行う。
すべてのオブジェクトの測定は、MAROONと呼ばれるマルチモーダルデータセットとして公開されます。
論文 参考訳(メタデータ) (2024-11-01T11:53:10Z) - Beyond Night Visibility: Adaptive Multi-Scale Fusion of Infrared and
Visible Images [49.75771095302775]
赤外線および可視画像を用いた適応型マルチスケール核融合ネットワーク(AMFusion)を提案する。
まず、赤外画像と可視画像から空間的特徴と意味的特徴を分離し、前者が光分布の調整に使用される。
第2に,事前学習したバックボーンから抽出した検出機能を利用して,意味的特徴の融合を誘導する。
第3に、通常の光強度で融合画像を制約する新しい照明損失を提案する。
論文 参考訳(メタデータ) (2024-03-02T03:52:07Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
マルチモーダル融合は、複数のモーダルからのデータを融合することで精度を高めることが決定されている。
早期に異なるチャネル間の関係をマッピングするための新しいマルチモーダル融合戦略を提案する。
本手法は,中期・後期の手法とは対照的に,早期の融合に対処することにより,既存の手法と比較して,競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-10-21T00:56:11Z) - Multi-Task Cross-Modality Attention-Fusion for 2D Object Detection [6.388430091498446]
レーダとカメラデータの整合性を向上する2つの新しいレーダ前処理手法を提案する。
また,オブジェクト検出のためのMulti-Task Cross-Modality Attention-Fusion Network (MCAF-Net)を導入する。
我々のアプローチは、nuScenesデータセットにおける現在の最先端のレーダーカメラフュージョンベースのオブジェクト検出器よりも優れています。
論文 参考訳(メタデータ) (2023-07-17T09:26:13Z) - ROFusion: Efficient Object Detection using Hybrid Point-wise
Radar-Optical Fusion [14.419658061805507]
本稿では,自律走行シナリオにおける物体検出のためのハイブリッドなポイントワイドレーダ・オプティカル融合手法を提案する。
このフレームワークは、マルチモーダルな特徴表現を学習するために統合されたレンジドップラースペクトルと画像の両方からの密集したコンテキスト情報から恩恵を受ける。
論文 参考訳(メタデータ) (2023-07-17T04:25:46Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
本稿では,検出者がより少ないパッチに注目するのに対して,より効率的な推論とより正確な結果を得るのに役立つObjectness Activation Network(OAN)を提案する。
OANを用いて、5つの検出器は3つの大規模な空中画像データセットで30.0%以上のスピードアップを取得する。
我々はOANをドライブシーン物体検出と4Kビデオ物体検出に拡張し,検出速度をそれぞれ112.1%,75.0%向上させた。
論文 参考訳(メタデータ) (2022-12-26T12:49:47Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T13:21:37Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
我々は、深度マップを用いて、RGBと深度の間の早期融合と中核融合を誘導する単一ストリームネットワークを設計する。
このモデルは、現在の最も軽量なモデルよりも55.5%軽く、32 FPSのリアルタイム速度で384倍の384ドルの画像を処理している。
論文 参考訳(メタデータ) (2020-07-14T04:40:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。