Quantum generalisation of Einstein's Equivalence Principle can be verified with entangled clocks as quantum reference frames
- URL: http://arxiv.org/abs/2112.03303v5
- Date: Wed, 09 Oct 2024 16:33:49 GMT
- Title: Quantum generalisation of Einstein's Equivalence Principle can be verified with entangled clocks as quantum reference frames
- Authors: Carlo Cepollaro, Flaminia Giacomini,
- Abstract summary: The Einstein Equivalence Principle (EEP) is of crucial importance to test the foundations of general relativity.
A violation of the EEP would have drastic consequences for physics.
Here we formulate a generalised EEP for delocalised quantum particles.
It can be verified experimentally, for instance in an atom interferometer.
- Score: 0.0
- License:
- Abstract: The Einstein Equivalence Principle (EEP) is of crucial importance to test the foundations of general relativity. When the particles involved in the test exhibit quantum properties, it is unknown whether this principle still holds. A violation of the EEP would have drastic consequences for physics. A more conservative possibility is that the EEP holds in a generalised form for delocalised quantum particles. Here we formulate such a generalised EEP by extending one of its paradigmatic tests with clocks to quantum clocks that are in a quantum superposition of positions and velocities. We show that the validity of such a generalised version of the EEP is equivalent to the possibility of transforming to the perspective of an arbitrary Quantum Reference Frame (QRF), namely a reference frame associated to the quantum state of the clock. We further show that this generalised EEP can be verified by measuring the proper time of entangled clocks in a quantum superposition of positions in the Earth gravitational field. The violation of the generalised EEP corresponds to the impossibility of defining dynamical evolution in the frame of each clock, and results in a modification to the probabilities of measurements calculated in the laboratory frame. Hence, it can be verified experimentally, for instance in an atom interferometer.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Observations in Quantum Cosmology [0.0]
We look at whether a canonical quantization of general relativity can produce testable predictions for cosmology.
In particular, we examine how this approach can be used to model the evolution of primordial perturbations.
We conclude that the subject of quantum geometrodynamics illuminates conceptual issues in quantum gravitation.
arXiv Detail & Related papers (2023-06-26T18:00:01Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Einstein's Equivalence principle for superpositions of gravitational
fields and quantum reference frames [0.0]
The Einstein Equivalence Principle (EEP) states that all laws of physics take their special-relativistic form in any local inertial (classical) reference frame.
Here, we propose that the EEP is valid for a broader class of reference frames, namely Quantum Reference Frames (QRFs) associated to quantum systems.
This means that the EEP is valid in a much wider set of physical situations than what it is currently applied to, including those in which the gravitational field is in a quantum superposition state.
arXiv Detail & Related papers (2020-12-26T14:56:25Z) - The Montevideo Interpretation: How the inclusion of a Quantum
Gravitational Notion of Time Solves the Measurement Problem [0.0]
We review the Montevideo Interpretation of quantum mechanics, based on the use of real clocks to describe physics.
Recent results on quantum complexity provide additional support to the type of global protocols used to prove that within ordinary -- unitary -- quantum mechanics no definite event occurs.
We show that, if one takes into account fundamental inescapable uncertainties in measuring length and time intervals due to general relativity and quantum mechanics, the previously mentioned global protocols no longer allow to distinguish whether the state is in a superposition or not.
arXiv Detail & Related papers (2020-10-27T18:00:01Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.