論文の概要: VizExtract: Automatic Relation Extraction from Data Visualizations
- arxiv url: http://arxiv.org/abs/2112.03485v1
- Date: Tue, 7 Dec 2021 04:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 14:48:43.098769
- Title: VizExtract: Automatic Relation Extraction from Data Visualizations
- Title(参考訳): VizExtract:データビジュアライゼーションからの自動関係抽出
- Authors: Dale Decatur, Sanjay Krishnan
- Abstract要約: 本稿では,統計チャートから比較変数を自動的に抽出する枠組みを提案する。
コンピュータビジョンベースのフレームワークを活用して,線グラフや散布プロット,バーグラフなどの視覚化ファセットを自動的に識別し,ローカライズする。
制御された実験では、87.5%の精度で、グラフごとに1-3級数を持つグラフの変数間の相関、色の変化、およびラインスタイルを分類することができる。
- 参考スコア(独自算出の注目度): 7.2241069295727955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual graphics, such as plots, charts, and figures, are widely used to
communicate statistical conclusions. Extracting information directly from such
visualizations is a key sub-problem for effective search through scientific
corpora, fact-checking, and data extraction. This paper presents a framework
for automatically extracting compared variables from statistical charts. Due to
the diversity and variation of charting styles, libraries, and tools, we
leverage a computer vision based framework to automatically identify and
localize visualization facets in line graphs, scatter plots, or bar graphs and
can include multiple series per graph. The framework is trained on a large
synthetically generated corpus of matplotlib charts and we evaluate the trained
model on other chart datasets. In controlled experiments, our framework is able
to classify, with 87.5% accuracy, the correlation between variables for graphs
with 1-3 series per graph, varying colors, and solid line styles. When deployed
on real-world graphs scraped from the internet, it achieves 72.8% accuracy
(81.2% accuracy when excluding "hard" graphs). When deployed on the FigureQA
dataset, it achieves 84.7% accuracy.
- Abstract(参考訳): プロット、チャート、フィギュアなどのビジュアルグラフィックは、統計的な結論を伝えるために広く使われている。
このような視覚化から直接情報を抽出することは、科学的コーパス、ファクトチェック、データ抽出による効果的な検索の鍵となる部分問題である。
本稿では,統計チャートから比較変数を自動的に抽出する枠組みを提案する。
チャート形式やライブラリ,ツールの多様性やバリエーションのために,コンピュータビジョンベースのフレームワークを活用して,線グラフや散布プロット,バーグラフなどの視覚化ファセットを自動的に識別し,ローカライズする。
本フレームワークは,マットプロトリップチャートの大規模合成コーパスに基づいて学習し,他のグラフデータセット上でトレーニングされたモデルを評価する。
制御された実験では、87.5%の精度で、1グラフあたり1-3列の変数、色、ソリッドラインスタイルの間の相関関係を分類することができる。
インターネットからスクレイプされた実世界のグラフにデプロイすると、72.8%の精度(ハードグラフを除くと81.2%の精度)が得られる。
FigureQAデータセットにデプロイすると、84.7%の精度が達成される。
関連論文リスト
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
我々は、RAGraph(General Retrieval-Augmented Graph Learning)と呼ばれる新しいフレームワークを紹介する。
RAGraphは、一般的なグラフ基盤モデルに外部グラフデータを導入し、目に見えないシナリオにおけるモデルの一般化を改善する。
推論中、RAGraphは下流タスクにおける重要な類似性に基づいて、似たようなおもちゃのグラフを順応的に検索する。
論文 参考訳(メタデータ) (2024-10-31T12:05:21Z) - Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
有意義なグラフ法則の同定は、様々な応用の有効性を著しく向上させることができる。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - PlasmoData.jl -- A Julia Framework for Modeling and Analyzing Complex Data as Graphs [0.0]
複雑なデータセットのモデリングと解析を容易にするため,グラフ理論の概念を用いたオープンソースのJuliaフレームワークであるPlasmoData.jlを提案する。
私たちのフレームワークの中核は、DataGraphと呼ばれる一般的なデータモデリング抽象化です。
本稿では,データオブジェクトをグラフとして表現するために,抽象化とソフトウェアの実装をどのように利用できるかを示す。
論文 参考訳(メタデータ) (2024-01-21T05:04:38Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - GenPlot: Increasing the Scale and Diversity of Chart Derendering Data [0.0]
我々は、合成データを用いて、チャートデレンダリングのための何十億ものプロットを生成するプロットジェネレータであるGenPlotを提案する。
OCR-free chart-to-text translation は視覚言語タスクの最先端の結果を得た。
論文 参考訳(メタデータ) (2023-06-20T17:25:53Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Graph Contrastive Learning Automated [94.41860307845812]
グラフコントラスト学習(GraphCL)は、有望な表現学習性能とともに登場した。
GraphCLのヒンジがアドホックなデータ拡張に与える影響は、データセット毎に手動で選択する必要がある。
本稿では,グラフデータ上でGraphCLを実行する際に,データ拡張を自動的に,適応的に動的に選択する統合バイレベル最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:35:27Z) - Tensor Fields for Data Extraction from Chart Images: Bar Charts and
Scatter Plots [0.0]
自動チャート読み込みは、データ抽出とグラフ画像からのデータのコンテキスト理解を含む。
適切なテンソル場をモデルとして同定し,その縮退点抽出をグラフ画像からのデータ抽出に用いる手法を提案する。
その結果, テンソル投票はバーチャートや散布図, ヒストグラムからのデータ抽出に有効であることが示唆された。
論文 参考訳(メタデータ) (2020-10-05T20:19:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
グラフ類似性は、下流アプリケーションを容易にするために、1組のグラフ間の類似度スコアを予測することを目的としている。
この問題を効果的に解決するために,PSimGNNと呼ばれるグラフ分割とグラフニューラルネットワークに基づくモデルを提案する。
PSimGNNはグラフ類似度メトリックとして近似グラフ編集距離(GED)を用いてグラフ類似度計算タスクにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-05-16T15:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。