Complexity for Open Quantum System
- URL: http://arxiv.org/abs/2112.03955v1
- Date: Tue, 7 Dec 2021 19:24:39 GMT
- Title: Complexity for Open Quantum System
- Authors: Arpan Bhattacharyya, Tanvir Hanif, S. Shajidul Haque, Md. Khaledur
Rahman
- Abstract summary: We study the complexity for an open quantum system.
We consider the reduced density matrix by tracing out the bath degrees of freedom for both regular and inverted oscillators.
For the inverted oscillator, we found a linear growth of COP with time for all values of bath-system interaction.
- Score: 1.8734449181723827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the complexity for an open quantum system. Our system is a harmonic
oscillator coupled to a one-dimensional massless scalar field, which acts as
the bath. Specifically, we consider the reduced density matrix by tracing out
the bath degrees of freedom for both regular and inverted oscillator and
computed the complexity of purification (COP) and complexity by using the
operator-state mapping. We found that when the oscillator is regular the COP
saturates quickly for both underdamped and overdamped oscillators.
Interestingly, when the oscillator is underdamped, we discover a kink like
behaviour for the saturation value of COP with varying damping coefficient. For
the inverted oscillator, we found a linear growth of COP with time for all
values of bath-system interaction. However, when the interaction is increased
the slope of the linear growth decreases, implying that the unstable nature of
the system can be regulated by the bath.
Related papers
- Revealing non-Markovian Kondo transport with waiting time distributions [0.7323373755126117]
We investigate non-Markovian transport dynamics and signatures of the Kondo effect in a single impurity Anderson model.
We calculate the waiting time distribution (WTD) of electrons tunneling into a detector using a combination of the hierarchical equations of motion approach (HEOM) and a dressed master equation.
Our results demonstrate that WTD oscillations offer a valuable tool for probing non-Markovian system-bath interactions.
arXiv Detail & Related papers (2024-10-02T16:27:27Z) - Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Anti-PT-symmetric harmonic oscillator and its relation to the inverted
harmonic oscillator [0.0]
We treat the quantum dynamics of a harmonic oscillator as well as its inverted counterpart in the Schr"odinger picture.
We show that the wavefunctions for this system are normalized in the sense of the pseudo-scalar product.
arXiv Detail & Related papers (2022-04-22T15:54:01Z) - Resonance in Weight Space: Covariate Shift Can Drive Divergence of SGD
with Momentum [26.25434025410027]
Existing work has shown that SGDm with a decaying step-size can converge under Markovian temporal correlation.
In this work, we show that SGDm under covariate shift with a fixed step-size can be unstable and diverge.
We approximate the learning system as a time varying system of ordinary differential equations, and leverage existing theory to characterize the system's divergence/convergence as resonant/nonresonant modes.
arXiv Detail & Related papers (2022-03-22T18:38:13Z) - Functional Renormalization analysis of Bose-Einstien Condensation
through complex interaction in Harmonic Oscillator; Can Bendixson criteria be
extended to complex time? [0.0]
Action renormalization will capture the phase of the wave functions.
The unitary and non-unitary regimes are discussed to connect with functional calculations.
A dual space Left-Right formulation is worked out in functional bosonic variables to derive the flow equation for scale dependent action.
arXiv Detail & Related papers (2021-12-03T09:37:12Z) - Aharonov-Bohm effect on the generalized Duffin-Kemmer-Petiau oscillator
in the Som-Raychaudhuri space-time [30.03335724329084]
The effect from the parameters of space-time, the frequency of oscillator, the Cornell potential and the magnetic flux on the energy eigenvalues have been analyzed.
We find an analogs effect for the bound states from the Aharonov-Bohm effect in our considered system.
arXiv Detail & Related papers (2021-06-23T06:48:42Z) - Dynamics of quantum correlations in a Qubit-Oscillator system
interacting via a dissipative bath [0.0]
We study the entanglement dynamics in a bipartite system consisting of a qubit and a harmonic oscillator interacting only through their coupling with the same bath.
Based on the Kossakowski Matrix, we show that non-classical correlations including entanglement can be generated by the considered dynamics.
arXiv Detail & Related papers (2020-02-11T02:29:27Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.