論文の概要: GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection
- arxiv url: http://arxiv.org/abs/2112.04298v1
- Date: Wed, 8 Dec 2021 14:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-09 14:33:20.251828
- Title: GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection
- Title(参考訳): GCA-Net : 画像のフォージェリ位置と検出を改善するためのゲーテッドコンテキストアテンションの利用
- Authors: Sowmen Das, Md. Saiful Islam, Md. Ruhul Amin
- Abstract要約: 本稿では,グローバルな文脈学習に非局所的注意ブロックを利用するGated Context Attention Network (GCA-Net)を提案する。
提案手法は,複数のベンチマークデータセットにおいて,平均4.2%-5.4%のAUCで最先端のネットワークより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.9883261192383611
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Forensic analysis depends on the identification of hidden traces from
manipulated images. Traditional neural networks fail in this task because of
their inability in handling feature attenuation and reliance on the dominant
spatial features. In this work we propose a novel Gated Context Attention
Network (GCA-Net) that utilizes the non-local attention block for global
context learning. Additionally, we utilize a gated attention mechanism in
conjunction with a dense decoder network to direct the flow of relevant
features during the decoding phase, allowing for precise localization. The
proposed attention framework allows the network to focus on relevant regions by
filtering the coarse features. Furthermore, by utilizing multi-scale feature
fusion and efficient learning strategies, GCA-Net can better handle the scale
variation of manipulated regions. We show that our method outperforms
state-of-the-art networks by an average of 4.2%-5.4% AUC on multiple benchmark
datasets. Lastly, we also conduct extensive ablation experiments to demonstrate
the method's robustness for image forensics.
- Abstract(参考訳): 法医学的分析は、操作された画像からの隠れた痕跡の同定に依存する。
従来のニューラルネットワークは、特徴の減衰や支配的な空間的特徴に依存しないため、このタスクでは失敗する。
本研究では,グローバルな文脈学習に非局所的注意ブロックを利用するGated Context Attention Network (GCA-Net)を提案する。
さらに,高密度デコーダネットワークと組み合わせたゲートアテンション機構を用いて,デコードフェーズにおける関連する特徴のフローを指示し,正確なローカライゼーションを実現する。
提案する注意フレームワークにより,ネットワークは粗い特徴をフィルタリングすることにより,関連する領域に集中することができる。
さらに,マルチスケール機能融合と効率的な学習戦略を利用することで,GCA-Netは操作領域のスケール変動をよりよく処理できる。
提案手法は,複数のベンチマークデータセットにおいて,平均4.2%-5.4%のAUCで最先端のネットワークより優れていることを示す。
最後に,画像鑑識に対するロバスト性を示すため,広範なアブレーション実験を行った。
関連論文リスト
- Leveraging Activations for Superpixel Explanations [2.8792218859042453]
ディープニューラルネットワークの説明ツールキットでは、サリエンシ手法が標準となっている。
本稿では,ディープニューラルネットワーク画像分類器の活性化からセグメンテーションを抽出することで,セグメンタへの依存を避けることを目的とする。
我々のいわゆるNuro-Activated Superpixels(NAS)は、モデルの予測に関連する入力に対する関心領域を分離することができる。
論文 参考訳(メタデータ) (2024-06-07T13:37:45Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
本稿では「クラッチ」ネットワーク接続を選択的に導入し、高密度デコードネットワーク(ddn)を提案する。
ネットワークデコーダの各アップサンプリングステージにおける「クラッチ」接続により、ターゲットのローカライゼーションが向上する。
また、適応的な深層監視(ads)に基づくトレーニング戦略を提案し、入力データセットの特定の属性を利用して適応する。
論文 参考訳(メタデータ) (2024-02-05T00:44:57Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
本稿では,リモートセンシング画像(RSI-Net)のセマンティックセグメンテーションのための2ストリームディープニューラルネットワークを提案する。
実験はVayhingen、Potsdam、Gaofen RSIデータセットで実施されている。
その結果,6つの最先端RSIセマンティックセグメンテーション法と比較して,総合的精度,F1スコア,カッパ係数において,RSI-Netの優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-19T15:57:20Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。