Multiway Ensemble Kalman Filter
- URL: http://arxiv.org/abs/2112.04322v1
- Date: Wed, 8 Dec 2021 15:04:34 GMT
- Title: Multiway Ensemble Kalman Filter
- Authors: Yu Wang and Alfred Hero
- Abstract summary: We study the emergence of sparsity and multiway structures in second-order statistical characterizations of dynamical processes governed by partial differential equations (PDEs)
We show that multiway data generated from the Poisson and the convection-diffusion types of PDEs can be accurately tracked via the ensemble Kalman filter (EnKF)
- Score: 9.0932688770957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study the emergence of sparsity and multiway structures in
second-order statistical characterizations of dynamical processes governed by
partial differential equations (PDEs). We consider several state-of-the-art
multiway covariance and inverse covariance (precision) matrix estimators and
examine their pros and cons in terms of accuracy and interpretability in the
context of physics-driven forecasting when incorporated into the ensemble
Kalman filter (EnKF). In particular, we show that multiway data generated from
the Poisson and the convection-diffusion types of PDEs can be accurately
tracked via EnKF when integrated with appropriate covariance and precision
matrix estimators.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Applications of flow models to the generation of correlated lattice QCD ensembles [69.18453821764075]
Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters.
This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables.
arXiv Detail & Related papers (2024-01-19T18:33:52Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - COMET Flows: Towards Generative Modeling of Multivariate Extremes and
Tail Dependence [13.041607703862724]
COMET Flows decompose the process of modeling a joint distribution into two parts: (i) modeling its marginal distributions, and (ii) modeling its copula distribution.
Results on both synthetic and real-world datasets demonstrate the effectiveness of COMET Flows.
arXiv Detail & Related papers (2022-05-02T21:37:54Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Variational Filtering with Copula Models for SLAM [5.242618356321224]
We show how it is possible to perform simultaneous localization and mapping (SLAM) with a larger class of distributions.
We integrate the distribution model with copulas into a Sequential Monte Carlo estimator and show how unknown model parameters can be learned through gradient-based optimization.
arXiv Detail & Related papers (2020-08-02T15:38:23Z) - Kernel Autocovariance Operators of Stationary Processes: Estimation and
Convergence [0.5505634045241288]
We consider autocovariance operators of a stationary process on a Polish space embedded into a kernel reproducing Hilbert space.
We investigate how empirical estimates of these operators converge along realizations of the process under various conditions.
We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities.
arXiv Detail & Related papers (2020-04-02T09:17:32Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.