Enhancing Food Intake Tracking in Long-Term Care with Automated Food
Imaging and Nutrient Intake Tracking (AFINI-T) Technology
- URL: http://arxiv.org/abs/2112.04608v1
- Date: Wed, 8 Dec 2021 22:25:52 GMT
- Title: Enhancing Food Intake Tracking in Long-Term Care with Automated Food
Imaging and Nutrient Intake Tracking (AFINI-T) Technology
- Authors: Kaylen J. Pfisterer, Robert Amelard, Jennifer Boger, Audrey G. Chung,
Heather H. Keller, Alexander Wong
- Abstract summary: Half of long-term care (LTC) residents are malnourished increasing hospitalization, mortality, morbidity, with lower quality of life.
This paper presents the automated food imaging and nutrient intake tracking (AFINI-T) technology designed for LTC.
- Score: 71.37011431958805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Half of long-term care (LTC) residents are malnourished increasing
hospitalization, mortality, morbidity, with lower quality of life. Current
tracking methods are subjective and time consuming. This paper presents the
automated food imaging and nutrient intake tracking (AFINI-T) technology
designed for LTC. We propose a novel convolutional autoencoder for food
classification, trained on an augmented UNIMIB2016 dataset and tested on our
simulated LTC food intake dataset (12 meal scenarios; up to 15 classes each;
top-1 classification accuracy: 88.9%; mean intake error: -0.4 mL$\pm$36.7 mL).
Nutrient intake estimation by volume was strongly linearly correlated with
nutrient estimates from mass ($r^2$ 0.92 to 0.99) with good agreement between
methods ($\sigma$= -2.7 to -0.01; zero within each of the limits of agreement).
The AFINI-T approach is a deep-learning powered computational nutrient sensing
system that may provide a novel means for more accurately and objectively
tracking LTC resident food intake to support and prevent malnutrition tracking
strategies.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - UMDFood: Vision-language models boost food composition compilation [26.5694236976957]
We propose a novel vision-language model, UMDFood-VL, using front-of-package labeling and product images to accurately estimate food composition profiles.
Up to 82.2% of selected products' estimated error between chemical analysis results and model estimation results are less than 10%.
This performance sheds light on generalization towards other food and nutrition-related data compilation and catalyzation.
arXiv Detail & Related papers (2023-05-18T03:18:12Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring [1.5469452301122173]
The absence of food monitoring has contributed significantly to the increase in the population's weight.
Some solutions have been proposed in computer vision to recognize food images, but few are specialized in nutritional monitoring.
This work presents the development of an intelligent system that classifies and segments food presented in images to help the automatic monitoring of user diet and nutritional intake.
arXiv Detail & Related papers (2020-12-05T17:40:05Z) - A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating
Behavior Using Smartwatches [8.257740966456172]
This paper presents a complete framework towards the automated i) modeling of in-meal eating behavior and ii) temporal localization of meals.
We present an end-to-end Neural Network which detects food intake events (i.e. bites)
We show how the distribution of the detected bites throughout the day can be used to estimate the start and end points of meals, using signal processing algorithms.
arXiv Detail & Related papers (2020-10-12T12:35:56Z) - An Artificial Intelligence-Based System to Assess Nutrient Intake for
Hospitalised Patients [4.048427587958764]
Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition.
We propose a novel system based on artificial intelligence (AI) to accurately estimate nutrient intake.
arXiv Detail & Related papers (2020-03-18T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.