論文の概要: Autoregressive Quantile Flows for Predictive Uncertainty Estimation
- arxiv url: http://arxiv.org/abs/2112.04643v1
- Date: Thu, 9 Dec 2021 01:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 22:20:53.607765
- Title: Autoregressive Quantile Flows for Predictive Uncertainty Estimation
- Title(参考訳): 予測不確実性推定のための自己回帰分位流
- Authors: Phillip Si, Allan Bishop, Volodymyr Kuleshov
- Abstract要約: 高次元変数上の確率モデルの柔軟なクラスである自己回帰量子フローを提案する。
これらのモデルは、適切なスコアリングルールに基づいて、新しい目的を用いて訓練された自己回帰フローの例である。
- 参考スコア(独自算出の注目度): 7.184701179854522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous applications of machine learning involve predicting flexible
probability distributions over model outputs. We propose Autoregressive
Quantile Flows, a flexible class of probabilistic models over high-dimensional
variables that can be used to accurately capture predictive aleatoric
uncertainties. These models are instances of autoregressive flows trained using
a novel objective based on proper scoring rules, which simplifies the
calculation of computationally expensive determinants of Jacobians during
training and supports new types of neural architectures. We demonstrate that
these models can be used to parameterize predictive conditional distributions
and improve the quality of probabilistic predictions on time series forecasting
and object detection.
- Abstract(参考訳): 機械学習の多くの応用は、モデル出力よりも柔軟な確率分布を予測することである。
本研究では,高次元変数上の確率モデルのフレキシブルなクラスである自己回帰的分位流を提案する。
これらのモデルは、適切なスコアリングルールに基づいた新しい目標を用いて訓練された自己回帰流の例であり、トレーニング中にヤコビアンの計算コストの高い行列式の計算を単純化し、新しいタイプのニューラルネットワークアーキテクチャをサポートする。
これらのモデルは,予測条件分布のパラメータ化や,時系列予測やオブジェクト検出における確率予測の品質向上に有効であることを示す。
関連論文リスト
- Conformalised Conditional Normalising Flows for Joint Prediction Regions in time series [7.200880964149064]
Conformal Predictionは、機械学習モデルの不確実性を定量化する強力なフレームワークを提供する。
正規化フローのような確率的生成モデルに共形予測を適用することは簡単ではない。
本研究では,条件付き正規化フローを適合させる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T02:19:13Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
この論文は、複雑な確率的クエリに答えるために自己回帰モデルを使うことに焦点を当てている。
我々は,モデルに依存しない逐次モデルにおいて,境界化のための新しい,効率的な近似手法のクラスを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:29:08Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
生成ニューラルネットワークを用いて高次元空間上の分布をパラメトリズする。
生成ネットワークをトレーニングし、関心の現象の時間的シーケンスの記録に基づいて、予測順序(または前順序)のスコアリングルールを最小化する。
本手法は,特に確率的キャリブレーションにおいて,最先端の対角法よりも優れている。
論文 参考訳(メタデータ) (2021-12-15T15:51:12Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。