論文の概要: On the Efficient Marginalization of Probabilistic Sequence Models
- arxiv url: http://arxiv.org/abs/2403.04005v1
- Date: Wed, 6 Mar 2024 19:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 16:03:35.171376
- Title: On the Efficient Marginalization of Probabilistic Sequence Models
- Title(参考訳): 確率的系列モデルの効率よい行列化について
- Authors: Alex Boyd
- Abstract要約: この論文は、複雑な確率的クエリに答えるために自己回帰モデルを使うことに焦点を当てている。
我々は,モデルに依存しない逐次モデルにおいて,境界化のための新しい,効率的な近似手法のクラスを開発する。
- 参考スコア(独自算出の注目度): 3.5897534810405403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data often exhibits sequential dependence, across diverse domains
such as human behavior, medicine, finance, and climate modeling. Probabilistic
methods capture the inherent uncertainty associated with prediction in these
contexts, with autoregressive models being especially prominent. This
dissertation focuses on using autoregressive models to answer complex
probabilistic queries that go beyond single-step prediction, such as the timing
of future events or the likelihood of a specific event occurring before
another. In particular, we develop a broad class of novel and efficient
approximation techniques for marginalization in sequential models that are
model-agnostic. These techniques rely solely on access to and sampling from
next-step conditional distributions of a pre-trained autoregressive model,
including both traditional parametric models as well as more recent neural
autoregressive models. Specific approaches are presented for discrete
sequential models, for marked temporal point processes, and for stochastic jump
processes, each tailored to a well-defined class of informative, long-range
probabilistic queries.
- Abstract(参考訳): 実世界のデータは、人間の行動、医学、金融、気候モデリングといった様々な領域に連続的に依存していることが多い。
確率論的手法はこれらの文脈における予測に関連する固有の不確実性を捉え、自己回帰モデルは特に顕著である。
この論文は、将来のイベントのタイミングや、別のイベントの前に発生する特定のイベントの確率といった、単一ステップの予測を超える複雑な確率的クエリに、自己回帰モデルを使用することに焦点を当てている。
特に,モデル非依存な逐次モデルにおけるマージン化のための新しい効率的な近似手法を広範に開発する。
これらのテクニックは、従来のパラメトリックモデルと最近のニューラル自己回帰モデルの両方を含む、事前訓練された自己回帰モデルの次のステップ条件分布へのアクセスとサンプリングにのみ依存する。
特定のアプローチは、離散的な逐次モデル、顕著な時間点過程、確率的ジャンププロセス、それぞれがよく定義された情報的長距離確率的クエリに適合する。
関連論文リスト
- ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Proは、不確実性を管理しながら依存関係を効果的にキャプチャする堅牢なソリューションを提供する。
4つのベンチマークトラフィックデータセットの実験により、ProGen Proは最先端の決定論的確率モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-11-02T14:37:30Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
マルコフ確率場を符号化する確率的グラフィカルモデルは、生成的モデリングの基本的な構成要素である。
本稿では,これらのモデルの全確率に基づく解析が,計算効率のよい方法で実現可能であることを示す。
論文 参考訳(メタデータ) (2024-04-27T02:58:22Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
設定値データを連続的にモデリングするための一般的なフレームワークを開発する。
また,そのようなモデルを用いて確率的クエリに答える推論手法も開発している。
論文 参考訳(メタデータ) (2023-12-22T20:16:10Z) - Interacting Diffusion Processes for Event Sequence Forecasting [20.380620709345898]
拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-26T22:17:25Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning [1.5293427903448025]
確率的フレームワーク内で物理インフォームされたリカレントニューラルネットワークを用いることで,96大気シミュレーションのモデルが競合することを示す。
これは、標準の1次自己回帰スキームと比較して時間的相関をモデル化する能力が優れているためである。
文献から多くの指標を評価するとともに、将来的な気候モデルにおいて、確率論的尺度が統一的な選択である可能性についても論じる。
論文 参考訳(メタデータ) (2022-03-28T14:51:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。