論文の概要: High-Dimensional Stock Portfolio Trading with Deep Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2112.04755v1
- Date: Thu, 9 Dec 2021 08:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 15:45:31.507823
- Title: High-Dimensional Stock Portfolio Trading with Deep Reinforcement
Learning
- Title(参考訳): 深層強化学習による高次元株式ポートフォリオ取引
- Authors: Uta Pigorsch and Sebastian Sch\"afer
- Abstract要約: このアルゴリズムは任意のサイズの断面データセットから高次元のポートフォリオを交換することができる。
我々は、各環境の資産を1つ集めて環境を順次設定し、その結果の資産の返却と現金の保留に報いるとともに、資産の集合の返却平均に報いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a Deep Reinforcement Learning algorithm for financial
portfolio trading based on Deep Q-learning. The algorithm is capable of trading
high-dimensional portfolios from cross-sectional datasets of any size which may
include data gaps and non-unique history lengths in the assets. We sequentially
set up environments by sampling one asset for each environment while rewarding
investments with the resulting asset's return and cash reservation with the
average return of the set of assets. This enforces the agent to strategically
assign capital to assets that it predicts to perform above-average. We apply
our methodology in an out-of-sample analysis to 48 US stock portfolio setups,
varying in the number of stocks from ten up to 500 stocks, in the selection
criteria and in the level of transaction costs. The algorithm on average
outperforms all considered passive and active benchmark investment strategies
by a large margin using only one hyperparameter setup for all portfolios.
- Abstract(参考訳): 本稿では,金融ポートフォリオ取引における深層q-learningに基づく深層強化学習アルゴリズムを提案する。
このアルゴリズムは、資産内のデータギャップや非固有履歴長を含む任意のサイズの横断データセットから、高次元のポートフォリオを取引することができる。
我々は,各環境に対して1つの資産をサンプリングし,得られた資産のリターンと平均的な資産のリターンによるキャッシュ予約で投資を報奨し,環境を順次設定する。
これにより、エージェントは、平均以上の実行を予想する資産に戦略的に資本を割り当てる。
当社の方法論は、米国株ポートフォリオの48の設定において、選択基準および取引コストのレベルにおいて、10から500株までの株式数が異なる、サンプル外分析に適用します。
平均的なアルゴリズムは、すべてのポートフォリオに対して1つのハイパーパラメータ設定だけで、受動的かつアクティブなベンチマーク投資戦略を大きなマージンで上回っている。
関連論文リスト
- Optimizing Portfolio Management and Risk Assessment in Digital Assets
Using Deep Learning for Predictive Analysis [5.015409508372732]
本稿では,DQNアルゴリズムを新規かつ簡単な方法で資産管理ポートフォリオに導入する。
この性能はベンチマークをはるかに上回り、ポートフォリオ管理におけるDRLアルゴリズムの有効性を十分に証明している。
異なる資産は別々に環境として訓練されるので、異なる資産間でQ値が漂う現象があるかもしれない。
論文 参考訳(メタデータ) (2024-02-25T05:23:57Z) - Onflow: an online portfolio allocation algorithm [0.0]
ポートフォリオ割り当てポリシーのオンライン最適化を可能にする強化学習手法であるOnflowを紹介する。
ログ正規資産の場合、トランザクションコストがゼロのOnflowが学んだ戦略は、Markowitzの最適ポートフォリオを模倣している。
オンフローは、他の動的アロケーション技術がもはや機能しないレギュレーションにおいて、効率的であり続けることができる。
論文 参考訳(メタデータ) (2023-12-08T16:49:19Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Hedging Properties of Algorithmic Investment Strategies using Long
Short-Term Memory and Time Series models for Equity Indices [0.0]
本稿では,金融危機に伴うリスク資産のポートフォリオ拡大に対する新たなアプローチを提案する。
我々は、価格予測を生成するために4種類の多様な理論モデルを使用し、単一のAISと複雑なAISの投資信号を生成するのに使用される。
我々の主な結論は、LSTMベースの戦略が他のモデルよりも優れており、S&P 500インデックスのために構築されたAISにとって最良の多様化要因はBitcoinのためのAISであるということだ。
論文 参考訳(メタデータ) (2023-09-27T13:18:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。