論文の概要: Deep Learning for Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2005.13665v3
- Date: Sat, 23 Jan 2021 18:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:58:05.894848
- Title: Deep Learning for Portfolio Optimization
- Title(参考訳): ポートフォリオ最適化のためのディープラーニング
- Authors: Zihao Zhang, Stefan Zohren, Stephen Roberts
- Abstract要約: 個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
- 参考スコア(独自算出の注目度): 5.833272638548154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We adopt deep learning models to directly optimise the portfolio Sharpe
ratio. The framework we present circumvents the requirements for forecasting
expected returns and allows us to directly optimise portfolio weights by
updating model parameters. Instead of selecting individual assets, we trade
Exchange-Traded Funds (ETFs) of market indices to form a portfolio. Indices of
different asset classes show robust correlations and trading them substantially
reduces the spectrum of available assets to choose from. We compare our method
with a wide range of algorithms with results showing that our model obtains the
best performance over the testing period, from 2011 to the end of April 2020,
including the financial instabilities of the first quarter of 2020. A
sensitivity analysis is included to understand the relevance of input features
and we further study the performance of our approach under different cost rates
and different risk levels via volatility scaling.
- Abstract(参考訳): ポートフォリオシャープ比率を直接最適化するために、ディープラーニングモデルを採用しています。
本稿では,期待されるリターンを予測するための要求を回避し,モデルパラメータを更新することによってポートフォリオの重み付けを直接最適化する。
個々の資産を選択する代わりに、市場指標の為替取引ファンド(etf)を取引してポートフォリオを形成します。
異なる資産クラスの指標は、堅牢な相関を示し、それらを取引することで、利用可能な資産のスペクトルを著しく減少させる。
我々は,本手法を幅広いアルゴリズムと比較し,本モデルが2011年から2020年4月末までの試験期間において,2020年第1四半期の金融不安定を含む最高の性能を得たことを示す結果と比較した。
入力特徴の関連性を理解するために感度分析を行い, ボラティリティスケーリングを通じて, コストレートとリスクレベルの違いによるアプローチの性能について検討する。
関連論文リスト
- Conformal Predictive Portfolio Selection [10.470114319701576]
CPPS(Conformal Predictive Portfolio Selection)と呼ばれる共形推論を用いた予測ポートフォリオ選択のためのフレームワークを提案する。
提案手法は,将来のポートフォリオのリターンを予測し,対応する予測間隔を計算し,これらの間隔に基づいて望ましいポートフォリオを選択する。
本稿では,ARモデルを用いたCPPSフレームワークの有効性を実証し,実証実験による性能評価を行った。
論文 参考訳(メタデータ) (2024-10-19T15:42:49Z) - AAPM: Large Language Model Agent-based Asset Pricing Models [4.326886488307076]
本稿では, LLMエージェントからの質的意思決定的投資分析と, 定量的な手動経済要因を融合した新たな資産価格手法を提案する。
実験結果から,本手法はポートフォリオ最適化および資産価格誤差において,機械学習に基づく資産価格ベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-25T18:27:35Z) - Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback [110.16220825629749]
嗜好フィードバックからの学習は、現代言語モデルの生成品質と性能を改善するための重要なステップとして現れてきた。
本研究では、嗜好データ、学習アルゴリズム、報酬モデル、政策訓練プロンプトという、嗜好に基づく学習の4つの側面を特定する。
以上の結果から,すべての側面がパフォーマンス上重要であることが示唆された。
論文 参考訳(メタデータ) (2024-06-13T16:17:21Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
本稿では,インド株式市場の7分野における階層的リスクパリティアルゴリズムと固有ポートフォリオという2つのアプローチを用いたポートフォリオ最適化の体系的アプローチを提案する。
ポートフォリオのバックテストの結果は、HRPポートフォリオのパフォーマンスが、調査されたセクターの大部分のトレーニングデータとテストデータの両方において、そのパフォーマンスよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-10-03T14:51:24Z) - Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model [0.0]
本論文では,インドのNSEの5つのテーマセクターに対して,最適リスクと固有ポートフォリオを設計するためのアルゴリズム的アプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTMモデルは将来の株価を予測するために設計されている。
ポートフォリオが結成されて7ヶ月後の2021年8月3日、ポートフォリオの実際のリターンはLSTM予測リターンと比較される。
論文 参考訳(メタデータ) (2022-02-06T07:41:20Z) - Stock Portfolio Optimization Using a Deep Learning LSTM Model [1.1470070927586016]
本研究は、2016年1月1日から2020年12月31日まで、インド株式市場の9つの異なるセクターからトップ5の株価を時系列的に分析してきた。
最適ポートフォリオはこれらのセクター毎に構築されます。
各ポートフォリオの予測と実際のリターンは高く,LSTMモデルの高精度性を示している。
論文 参考訳(メタデータ) (2021-11-08T18:41:49Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。