論文の概要: Building crypto portfolios with agentic AI
- arxiv url: http://arxiv.org/abs/2507.20468v1
- Date: Fri, 11 Jul 2025 18:03:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.845739
- Title: Building crypto portfolios with agentic AI
- Title(参考訳): エージェントAIによる暗号ポートフォリオの構築
- Authors: Antonino Castelli, Paolo Giudici, Alessandro Piergallini,
- Abstract要約: 暗号通貨市場の急速な成長は投資家に新たな機会を与えたが、同時に高いボラティリティがもたらされた。
本稿では,暗号アロケーションを自律的に構築し,評価するためのマルチエージェントシステムの実用化について述べる。
- 参考スコア(独自算出の注目度): 46.348283638884425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of crypto markets has opened new opportunities for investors, but at the same time exposed them to high volatility. To address the challenge of managing dynamic portfolios in such an environment, this paper presents a practical application of a multi-agent system designed to autonomously construct and evaluate crypto-asset allocations. Using data on daily frequencies of the ten most capitalized cryptocurrencies from 2020 to 2025, we compare two automated investment strategies. These are a static equal weighting strategy and a rolling-window optimization strategy, both implemented to maximize the evaluation metrics of the Modern Portfolio Theory (MPT), such as Expected Return, Sharpe and Sortino ratios, while minimizing volatility. Each step of the process is handled by dedicated agents, integrated through a collaborative architecture in Crew AI. The results show that the dynamic optimization strategy achieves significantly better performance in terms of risk-adjusted returns, both in-sample and out-of-sample. This highlights the benefits of adaptive techniques in portfolio management, particularly in volatile markets such as cryptocurrency markets. The following methodology proposed also demonstrates how multi-agent systems can provide scalable, auditable, and flexible solutions in financial automation.
- Abstract(参考訳): 暗号通貨市場の急速な成長は投資家に新たな機会を与えたが、同時に高いボラティリティがもたらされた。
このような環境下での動的ポートフォリオ管理の課題に対処するために,暗号資産割り当てを自律的に構築・評価する多エージェントシステムの実践的応用を提案する。
2020年から2025年までの10大暗号通貨の日々の頻度のデータを用いて、2つの自動投資戦略を比較した。
これらは静的な等重み付け戦略とローリングウインドウ最適化戦略であり、どちらも変動性を最小限に抑えつつ、期待されたリターン、シャープ、ソルティーノ比などのモダンポートフォリオ理論(MPT)の評価指標を最大化するために実装されている。
プロセスの各ステップは専用のエージェントによって処理され、Crew AIの協調アーキテクチャを通じて統合される。
その結果, 動的最適化手法は, サンプル内およびサンプル外の両方において, リスク調整されたリターンにおいて, 大幅な性能向上を実現していることがわかった。
これは、特に仮想通貨市場のような不安定な市場において、ポートフォリオ管理における適応的手法の利点を強調している。
提案した以下の手法は、金融自動化において、マルチエージェントシステムがスケーラブルで監査可能で柔軟なソリューションを提供する方法を実証する。
関連論文リスト
- Deep Learning Enhanced Multi-Day Turnover Quantitative Trading Algorithm for Chinese A-Share Market [0.0]
アルゴリズムは2010-2020年の総合的なAシェアデータに基づいて訓練され、2021-2024のデータに対して厳格に検証されている。
15.2%の年次リターン、5%未満の最大降格、シャープ比1.87で顕著なパフォーマンスを達成した。
論文 参考訳(メタデータ) (2025-06-03T01:59:55Z) - Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach [2.2835610890984164]
本研究では,投資家のリスクプロファイルに基づいてポートフォリオを動的に構築するボラティリティ誘導型ポートフォリオ最適化フレームワークを提案する。
提案手法の有効性はダウ30ドル指数の株を用いて確立された。
論文 参考訳(メタデータ) (2025-04-20T10:17:37Z) - Dynamic Hedging Strategies in Derivatives Markets with LLM-Driven Sentiment and News Analytics [30.815524322885754]
本稿では,感情分析やニュース分析に大規模言語モデル(LLM)を活用する新たなフレームワークを提案する。
このフレームワークは、ヘッジ戦略に対するリアルタイムな調整を可能にし、継続的な感情信号に基づいて位置を調整する。
論文 参考訳(メタデータ) (2025-04-05T22:35:06Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - MTS: A Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling [0.8642326601683299]
本稿では,時間認識と短時間販売を伴うDeep Reinforcement Learning Portfolio Management Frameworkを紹介する。
動的リスク管理の限界、時間的市場の利用、短期販売のような複雑な取引戦略の導入に対処する。
シャープ、オメガ、ソルティーノ比の累積リターンを継続的に達成し、リスクとリターンのバランスをとる効果を裏付ける。
論文 参考訳(メタデータ) (2025-03-06T06:41:17Z) - Composing Ensembles of Instrument-Model Pairs for Optimizing Profitability in Algorithmic Trading [0.0]
本稿では,短期的な物価変動を予測することの難しさに対処するため,金融商品の日価方向予測システムについて述べる。
戦略は幅広い金融商品や時間枠で実証され、ベンチマークよりも20%改善された。
論文 参考訳(メタデータ) (2024-11-06T18:17:26Z) - Automate Strategy Finding with LLM in Quant Investment [15.475504003134787]
本稿では,大規模言語モデル(LLM)をリスク認識型マルチエージェントシステム内で活用し,定量的ファイナンスにおける戦略発見を自動化する新しい3段階フレームワークを提案する。
本手法は,金融分野における従来のディープラーニングモデルの脆さに対処するものである。
実験結果は、確立されたベンチマークと比較して、中国とアメリカの市場体制における戦略の堅牢な性能を示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent [44.99833362998488]
我々はポートフォリオ管理のための新しい説明可能な深層強化学習(XDRL)アプローチを開発した。
方法論を実践することにより、エージェントの行動を予測する時間内に解釈し、投資政策の要件に従うかどうかを評価することができる。
論文 参考訳(メタデータ) (2024-07-19T17:40:39Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization [29.568222003322344]
マルチプレイヤーの正規形式ゲームにおけるゲームダイナミクスを識別するためのサイドインフォーム支援回帰(SIAR)フレームワークを提案する。
SIARは、SOS(sum-of-squares)最適化を用いて解決され、その結果、システムの真の力学に確実に収束する近似の階層となる。
SIARフレームワークは,未知のシステムがカオスであっても,通常のゲーム,広く知られているゲームダイナミクスのファミリー,強力なベンチマークの範囲で,プレーヤの挙動を正確に予測する。
論文 参考訳(メタデータ) (2023-07-13T09:14:48Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
既存のディープラーニング手法はランダムなシードやネットワークルータに敏感であることを示す。
本稿では,成功した取引会社の効果的なボトムアップトレーディング戦略設計ワークフローを模倣する,量的投資のための新しい2段階混成(MoE)フレームワークを提案する。
AlphaMixは4つの財務基準において、最先端のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2022-06-07T08:58:00Z) - Bitcoin Transaction Strategy Construction Based on Deep Reinforcement
Learning [8.431365407963629]
本研究では,PPO(Deep reinforcement Learning Algorithm-proximal Policy Optimization)に基づく,高速ビットコイン自動取引のためのフレームワークを提案する。
提案したフレームワークは、ボラティリティと急上昇の期間を通じて過剰なリターンを得ることができるため、ディープラーニングに基づく単一暗号通貨取引戦略を構築するための扉を開くことができる。
論文 参考訳(メタデータ) (2021-09-30T01:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。