Thermodynamics of quantum-jump trajectories of open quantum systems
subject to stochastic resetting
- URL: http://arxiv.org/abs/2112.05078v3
- Date: Tue, 4 Oct 2022 14:49:46 GMT
- Title: Thermodynamics of quantum-jump trajectories of open quantum systems
subject to stochastic resetting
- Authors: Gabriele Perfetto, Federico Carollo and Igor Lesanovsky
- Abstract summary: We consider Markovian open quantum systems subject to resetting.
We show that the dynamics is non-Markovian and has the form of a generalized Lindblad equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider Markovian open quantum systems subject to stochastic resetting,
which means that the dissipative time evolution is reset at randomly
distributed times to the initial state. We show that the ensuing dynamics is
non-Markovian and has the form of a generalized Lindblad equation.
Interestingly, the statistics of quantum-jumps can be exactly derived. This is
achieved by combining techniques from the thermodynamics of quantum-jump
trajectories with the renewal structure of the resetting dynamics. We consider
as an application of our analysis a driven two-level and an intermittent
three-level system. Our findings show that stochastic resetting may be
exploited as a tool to tailor the statistics of the quantum-jump trajectories
and the dynamical phases of open quantum systems.
Related papers
- Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Stochastic Representation of the Quantum Quartic Oscillator [0.0]
We show how to parameterize the time evolution of this model via the dynamics of a set of classical variables.
We propose a novel way to numerically simulate the time evolution of the system.
arXiv Detail & Related papers (2022-11-03T16:04:26Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Dynamics of closed quantum systems under stochastic resetting [0.0]
We consider a closed quantum system subject to a resetting process.
We analyse the behaviour of the state in the long-time regime.
Special attention is paid to the two-level (qubit) system.
arXiv Detail & Related papers (2022-09-12T22:42:29Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.