論文の概要: PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
- arxiv url: http://arxiv.org/abs/2112.05135v1
- Date: Thu, 9 Dec 2021 18:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 14:14:39.110816
- Title: PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
- Title(参考訳): pixmix:dreamlike picturesは安全対策を総合的に改善
- Authors: Dan Hendrycks and Andy Zou and Mantas Mazeika and Leonard Tang and
Dawn Song and Jacob Steinhardt
- Abstract要約: フラクタルなどの画像の自然な構造的複雑さを利用した新しいデータ拡張戦略を提案する。
この課題に対処するために、フラクタルなどの画像の自然な構造的複雑さを利用した新しいデータ拡張戦略を設計する。
- 参考スコア(独自算出の注目度): 65.03203506568691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications of machine learning, reliable and safe systems
must consider measures of performance beyond standard test set accuracy. These
other goals include out-of-distribution (OOD) robustness, prediction
consistency, resilience to adversaries, calibrated uncertainty estimates, and
the ability to detect anomalous inputs. However, improving performance towards
these goals is often a balancing act that today's methods cannot achieve
without sacrificing performance on other safety axes. For instance, adversarial
training improves adversarial robustness but sharply degrades other classifier
performance metrics. Similarly, strong data augmentation and regularization
techniques often improve OOD robustness but harm anomaly detection, raising the
question of whether a Pareto improvement on all existing safety measures is
possible. To meet this challenge, we design a new data augmentation strategy
utilizing the natural structural complexity of pictures such as fractals, which
outperforms numerous baselines, is near Pareto-optimal, and roundly improves
safety measures.
- Abstract(参考訳): 機械学習の現実世界のアプリケーションでは、信頼性と安全性を備えたシステムは、標準テストセットの精度以上のパフォーマンスの尺度を考慮しなければならない。
その他の目標には、分散(ood)の堅牢性、予測一貫性、敵へのレジリエンス、不確実性の推定の校正、異常な入力の検出機能などがある。
しかしながら、これらの目標に対するパフォーマンス向上は、しばしば、今日のメソッドが他の安全軸のパフォーマンスを犠牲にすることなく達成できないバランスをとる行為である。
例えば、敵のトレーニングは敵の堅牢性を改善するが、他の分類器のパフォーマンス指標を著しく低下させる。
同様に、強固なデータ拡張と正規化技術は、oodの堅牢性を改善するが異常検出を害し、既存のすべての安全対策においてパレート改善が可能かどうかという疑問を提起する。
この課題に対処するために、多数のベースラインを上回り、パレート最適に近いフラクタルなどの画像の自然な構造的複雑さを活用し、安全対策を徹底的に改善する新しいデータ拡張戦略を設計する。
関連論文リスト
- Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
我々は、ディープニューラルネットワーク(DNN)の敵攻撃に対する堅牢性を証明するために、リプシッツ連続性の概念を探求する。
本稿では,入力領域を制約範囲に再マップし,リプシッツ定数を低減し,ロバスト性を高める新しいアルゴリズムを提案する。
本手法は,ロバストベンチリーダーボード上のCIFAR10,CIFAR100,ImageNetデータセットに対して,最も堅牢な精度を実現する。
論文 参考訳(メタデータ) (2024-06-28T03:10:36Z) - Towards Precise Observations of Neural Model Robustness in Classification [2.127049691404299]
ディープラーニングアプリケーションでは、ロバストネスは入力データのわずかな変化を処理するニューラルネットワークの能力を測定する。
私たちのアプローチは、安全クリティカルなアプリケーションにおけるモデルロバストネスのより深い理解に寄与します。
論文 参考訳(メタデータ) (2024-04-25T09:37:44Z) - Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume [17.198794644483026]
本稿では,様々な摂動強度に対して総合的に深層学習モデルの頑健性を評価するための,対向超体積と呼ばれる新しい計量法を提案する。
我々は,様々な摂動強度の対向的堅牢性を均一に向上する新しいトレーニングアルゴリズムを採用する。
本研究はロバスト性の新しい尺度に寄与し、敵の脅威に対するベンチマーク評価と、現在および将来の防御モデルのレジリエンスの基準を確立する。
論文 参考訳(メタデータ) (2024-03-08T07:03:18Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
すべてのシナリオで正確であるネットワークをトレーニングすることはできない。
深層学習法は不確実性を推定するためにモデルパラメータ空間をサンプリングする。
これらのパラメータは、しばしば、敵の攻撃によって悪用される、同じ脆弱性にさらされる。
本稿では,特徴デコレーションとフーリエ分割に基づく新たなアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T02:36:36Z) - How many perturbations break this model? Evaluating robustness beyond
adversarial accuracy [28.934863462633636]
入力点と摂動方向の制約の両方が与えられた摂動を成功させることがいかに困難であるかを定量化する。
空間性は、ニューラルネットワークに関する貴重な洞察を、複数の方法で提供することを示す。
論文 参考訳(メタデータ) (2022-07-08T21:25:17Z) - On the Robustness of Quality Measures for GANs [136.18799984346248]
本研究は、インセプションスコア(IS)やFr'echet Inception Distance(FID)のような生成モデルの品質測定の堅牢性を評価する。
このような測度は、加算画素摂動によっても操作可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T06:43:09Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
安全は次世代の自律性にとって重要な問題であり、知覚と制御のためにディープニューラルネットワークに大きく依存する可能性が高い。
本研究は,安全クリティカルシステムにおける安全でないDNNを到達可能性解析で修復する枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:56:51Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。