論文の概要: Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume
- arxiv url: http://arxiv.org/abs/2403.05100v2
- Date: Sun, 17 Nov 2024 14:42:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:38.729990
- Title: Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume
- Title(参考訳): 対人フロンティアの探索:対人ハイパーボリュームによるロバストネスの定量化
- Authors: Ping Guo, Cheng Gong, Xi Lin, Zhiyuan Yang, Qingfu Zhang,
- Abstract要約: 本稿では,様々な摂動強度に対して総合的に深層学習モデルの頑健性を評価するための,対向超体積と呼ばれる新しい計量法を提案する。
我々は,様々な摂動強度の対向的堅牢性を均一に向上する新しいトレーニングアルゴリズムを採用する。
本研究はロバスト性の新しい尺度に寄与し、敵の脅威に対するベンチマーク評価と、現在および将来の防御モデルのレジリエンスの基準を確立する。
- 参考スコア(独自算出の注目度): 17.198794644483026
- License:
- Abstract: The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has underscored the need for robust deep learning systems. Conventional robustness evaluations have relied on adversarial accuracy, which measures a model's performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this gap, we propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness afforded by less potent defensive strategies. Additionally, we adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities, in contrast to methods narrowly focused on optimizing adversarial accuracy. Our extensive empirical studies validate the effectiveness of the adversarial hypervolume metric, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks. This research contributes a new measure of robustness and establishes a standard for assessing and benchmarking the resilience of current and future defensive models against adversarial threats.
- Abstract(参考訳): ディープラーニングモデルに対する敵対的攻撃のエスカレートする脅威、特にセキュリティクリティカルな分野では、堅牢なディープラーニングシステムの必要性が強調されている。
従来のロバスト性評価は、特定の摂動強度の下でモデルの性能を測定する敵の精度に依存する。
しかし、この特異計量は、様々な摂動の度合いに対してモデル全体のレジリエンスを完全にカプセル化していない。
このギャップに対処するために,多目的最適化の観点から,様々な摂動強度に対して包括的に深層学習モデルのロバスト性を評価する,逆数ハイパーボリュームと呼ばれる新しい指標を提案する。
この計量は、防御機構の詳細な比較を可能にし、より強力な防御戦略によって得られる頑丈さの自明な改善を認識する。
さらに,種々の摂動強度に対して一様に敵の頑健性を向上する新たなトレーニングアルゴリズムを,敵の精度の最適化に焦点を絞った手法に対して採用する。
本研究は, 対向的超体積測定の有効性を実証し, 対向的精度が見落としているロバスト性の微妙な相違を明らかにする能力を示した。
本研究は、ロバスト性の新しい尺度に寄与し、敵の脅威に対して現在および将来の防衛モデルのレジリエンスを評価し、ベンチマークする基準を確立する。
関連論文リスト
- Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
敵の訓練は、しばしばモデルの堅牢性を高めるために使用される。
我々は、この観測されたロバストネスの利得はロバストネスの錯覚(IOR)であることを示した。
我々は,NLPコミュニティに対して,試験時間温度のスケーリングを堅牢性評価に組み込むよう促す。
論文 参考訳(メタデータ) (2024-02-27T13:49:12Z) - Dynamic ensemble selection based on Deep Neural Network Uncertainty
Estimation for Adversarial Robustness [7.158144011836533]
本研究では,動的アンサンブル選択技術を用いてモデルレベルの動的特性について検討する。
トレーニング段階では、ディリクレ分布はサブモデルの予測分布の先行として適用され、パラメータ空間における多様性制約が導入された。
テストフェーズでは、最終的な予測のための不確かさ値のランクに基づいて、特定のサブモデルが動的に選択される。
論文 参考訳(メタデータ) (2023-08-01T07:41:41Z) - Revisiting DeepFool: generalization and improvement [17.714671419826715]
我々は,有効性と計算効率のバランスを崩す新たな敵攻撃群を導入する。
提案手法は,大規模モデルのロバスト性の評価にも適している。
論文 参考訳(メタデータ) (2023-03-22T11:49:35Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - How many perturbations break this model? Evaluating robustness beyond
adversarial accuracy [28.934863462633636]
入力点と摂動方向の制約の両方が与えられた摂動を成功させることがいかに困難であるかを定量化する。
空間性は、ニューラルネットワークに関する貴重な洞察を、複数の方法で提供することを示す。
論文 参考訳(メタデータ) (2022-07-08T21:25:17Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Adversarially Robust Estimate and Risk Analysis in Linear Regression [17.931533943788335]
反対に堅牢な学習は、入力変数の小さな反対の摂動に対して堅牢なアルゴリズムを設計することを目指している。
逆ロバストな推定器の収束率を統計的に最小化することで,モデル情報の導入の重要性を強調する。
本研究では, モデル構造情報を活用することで, 素直な2段階の対人学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-18T14:55:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。