Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction
- URL: http://arxiv.org/abs/2401.15964v1
- Date: Mon, 29 Jan 2024 08:49:53 GMT
- Title: Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction
- Authors: Zhixin Huang and Yujiang He and Bernhard Sick
- Abstract summary: This study presents the Spatio-Temporal Attention Graph Neural Network.
Our model combines graph neural networks and temporal convolutional neural networks for spatial and temporal feature extraction.
Comprehensive experiments were conducted on the C-MAPSS dataset to evaluate the impact of unified versus clustering normalization.
- Score: 1.831835396047386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remaining useful life prediction plays a crucial role in the health
management of industrial systems. Given the increasing complexity of systems,
data-driven predictive models have attracted significant research interest.
Upon reviewing the existing literature, it appears that many studies either do
not fully integrate both spatial and temporal features or employ only a single
attention mechanism. Furthermore, there seems to be inconsistency in the choice
of data normalization methods, particularly concerning operating conditions,
which might influence predictive performance. To bridge these observations,
this study presents the Spatio-Temporal Attention Graph Neural Network. Our
model combines graph neural networks and temporal convolutional neural networks
for spatial and temporal feature extraction, respectively. The cascade of these
extractors, combined with multi-head attention mechanisms for both
spatio-temporal dimensions, aims to improve predictive precision and refine
model explainability. Comprehensive experiments were conducted on the C-MAPSS
dataset to evaluate the impact of unified versus clustering normalization. The
findings suggest that our model performs state-of-the-art results using only
the unified normalization. Additionally, when dealing with datasets with
multiple operating conditions, cluster normalization enhances the performance
of our proposed model by up to 27%.
Related papers
- CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - DisenHCN: Disentangled Hypergraph Convolutional Networks for
Spatiotemporal Activity Prediction [53.76601630407521]
We propose a hypergraph network model called DisenHCN to bridge the gaps in existing solutions.
In particular, we first unify fine-grained user similarity and the complex matching between user preferences andtemporal activity into a heterogeneous hypergraph.
We then disentangle the user representations into different aspects (location-aware, time-aware, and activity-aware) and aggregate corresponding aspect's features on the constructed hypergraph.
arXiv Detail & Related papers (2022-08-14T06:51:54Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
We present a novel deep learning architecture that incorporates theories of spatial statistics into neural networks.
DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends.
We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction in a well-fitting, complex physical environment.
arXiv Detail & Related papers (2021-12-10T03:21:19Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
We present the Interpretable-RNN (I-RNN) that balances model complexity and accuracy by forcing the relationship between variables in the model to be additive.
I-RNN specifically captures the unique characteristics of clinical time series, which are unevenly sampled in time, asynchronously acquired, and have missing data.
We evaluate the I-RNN model on the Physionet 2012 Challenge dataset to predict in-hospital mortality, and on a real-world clinical decision support task: predicting hemodynamic interventions in the intensive care unit.
arXiv Detail & Related papers (2021-09-15T22:30:19Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
arXiv Detail & Related papers (2021-07-03T06:20:43Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
This paper proposes a novel model that efficiently extracts both spatial and temporal features of the data by means of its enhanced temporal modelling based on latent features.
Our proposed model consists of three major networks, coined Generator, Discriminator, and Combiner, which are trained in an adversarial setting combined with curriculum learning to enable our adaptive attention modules.
arXiv Detail & Related papers (2021-02-18T04:10:12Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
We propose two novel extensions of the Neural Functional Network (FNN), a temporal regression model whose effectiveness has been proven by many researchers.
The proposed models are then deployed to solve a practical and challenging precipitation prediction problem in the meteorology field.
arXiv Detail & Related papers (2020-09-11T21:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.