Neural Belief Propagation for Scene Graph Generation
- URL: http://arxiv.org/abs/2112.05727v1
- Date: Fri, 10 Dec 2021 18:30:27 GMT
- Title: Neural Belief Propagation for Scene Graph Generation
- Authors: Daqi Liu, Miroslaw Bober, Josef Kittler
- Abstract summary: We propose a novel neural belief propagation method to generate the resulting scene graph.
It employs a structural Bethe approximation rather than the mean field approximation to infer the associated marginals.
It achieves the state-of-the-art performance on various popular scene graph generation benchmarks.
- Score: 31.9682610869767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene graph generation aims to interpret an input image by explicitly
modelling the potential objects and their relationships, which is predominantly
solved by the message passing neural network models in previous methods.
Currently, such approximation models generally assume the output variables are
totally independent and thus ignore the informative structural higher-order
interactions. This could lead to the inconsistent interpretations for an input
image. In this paper, we propose a novel neural belief propagation method to
generate the resulting scene graph. It employs a structural Bethe approximation
rather than the mean field approximation to infer the associated marginals. To
find a better bias-variance trade-off, the proposed model not only incorporates
pairwise interactions but also higher order interactions into the associated
scoring function. It achieves the state-of-the-art performance on various
popular scene graph generation benchmarks.
Related papers
- GraphGI:A GNN Explanation Method using Game Interaction [5.149896909638598]
Graph Neural Networks (GNNs) have garnered significant attention and have been extensively utilized across various domains.
Current graph explanation techniques focus on identifying key nodes or edges, attributing the critical data features that drive model predictions.
We propose a novel explanatory method GraphGI, which identifies the coalition with the highest interaction strength and presents it as an explanatory subgraph.
arXiv Detail & Related papers (2024-09-24T03:24:31Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Importance Weighted Structure Learning for Scene Graph Generation [40.46394569128303]
We propose a novel importance weighted structure learning method for scene graph generation.
A generic entropic mirror descent algorithm is applied to solve the resulting constrained variational inference task.
The proposed method achieves the state-of-the-art performance on various popular scene graph generation benchmarks.
arXiv Detail & Related papers (2022-05-14T09:25:14Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - Neuralizing Efficient Higher-order Belief Propagation [19.436520792345064]
We propose to combine approaches to learn better node and graph representations.
We derive an efficient approximate sum-product loopy belief propagation inference algorithm for higher-order PGMs.
Our model indeed captures higher-order information, substantially outperforming state-of-the-art $k$-order graph neural networks in molecular datasets.
arXiv Detail & Related papers (2020-10-19T07:51:31Z) - Residual Correlation in Graph Neural Network Regression [39.54530450932135]
We show that conditional independence assumption severely limits predictive power.
We address this problem with an interpretable and efficient framework.
Our framework achieves substantially higher accuracy than competing baselines.
arXiv Detail & Related papers (2020-02-19T16:32:54Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.