Cooperative optical wavefront engineering with atomic arrays
- URL: http://arxiv.org/abs/2112.11866v1
- Date: Wed, 22 Dec 2021 13:22:51 GMT
- Title: Cooperative optical wavefront engineering with atomic arrays
- Authors: Kyle E. Ballantine and Janne Ruostekoski
- Abstract summary: Natural atoms can cooperatively respond to light to form collective excitations with strong magnetic, as well as electric, interactions, together with corresponding electric and magnetic mirror reflection properties.
We show that ultrathin planar arrays of atoms can be utilized as atomic lenses to focus light to subwavelength spots at the diffraction limit, to steer light at different angles allowing for optical sorting, and as converters between different angular momentum states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural materials typically interact weakly with the magnetic component of
light which greatly limits their applications. This has led to the development
of artificial metamaterials and metasurfaces. However, natural atoms, where
only electric dipole transitions are relevant at optical frequencies, can
cooperatively respond to light to form collective excitations with strong
magnetic, as well as electric, interactions, together with corresponding
electric and magnetic mirror reflection properties. By combining the electric
and magnetic collective degrees of freedom we show that ultrathin planar arrays
of atoms can be utilized as atomic lenses to focus light to subwavelength spots
at the diffraction limit, to steer light at different angles allowing for
optical sorting, and as converters between different angular momentum states.
The method is based on coherently superposing induced electric and magnetic
dipoles to engineer a quantum nanophotonic Huygens' surface of atoms, giving
full $2\pi$ phase control over the transmission, with close to zero reflection.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Strong Purcell enhancement of an optical magnetic dipole transition [0.0]
Engineering the local density of states with nanophotonic structures is a powerful tool to control light-matter interactions via the Purcell effect.
We experimentally demonstrate the optical magnetic Purcell effect using a single rare earth ion coupled to a nanophotonic cavity.
This work demonstrates the fundamental equivalence of electric and magnetic density of states engineering, and provides a new tool for controlling light-matter interactions for a broader class of emitters.
arXiv Detail & Related papers (2023-07-06T14:37:58Z) - Engineering quantum control with twisted-light fields induced optical
transitions [0.0]
A novel form of quantum control is proposed by applying twisted-light also known as optical vortex beams.
This method introduces spatially tailored electric and magnetic fields to rewrite atomic selection rules.
Engineering light-matter interaction by optical vortices will benefit to experimental atomic and molecular platforms.
arXiv Detail & Related papers (2023-06-30T12:51:23Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Optical magnetism and wavefront control by arrays of strontium atoms [0.0]
We show how bosonic Sr atoms in planar optical lattices can be engineered to exhibit optical magnetism.
We provide a detailed scheme to utilize excitations of such cooperative modes to form an atomic Huygens' surface.
arXiv Detail & Related papers (2022-05-16T14:58:26Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optical Magnetism and Huygens' Surfaces in Arrays of Atoms Induced by
Cooperative Responses [0.0]
We show how to synthesize optical responses that correspond to those formed by arrays of magnetic dipoles and other multipoles.
Optically active magnetism with the strength comparable with that of electric dipole transitions is achieved in collective excitation eigenmodes of the array.
arXiv Detail & Related papers (2020-02-28T18:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.