論文の概要: Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions
- arxiv url: http://arxiv.org/abs/2112.08088v1
- Date: Wed, 15 Dec 2021 12:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 14:37:15.803137
- Title: Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions
- Title(参考訳): 気象条件下での物体検出のための画像適応型ヨーロ
- Authors: Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jianke Zhu, Lei Zhang
- Abstract要約: 本稿では,画像適応型YOLO(IA-YOLO)フレームワークを提案する。
具体的には、YOLO検出器の悪天候を考慮した微分可能画像処理(DIP)モジュールを提示する。
我々は、CNN-PPとYOLOv3をエンドツーエンドで共同で学習し、CNN-PPが適切なDIPを学習し、弱い教師付きで検出のための画像を強化することを保証する。
- 参考スコア(独自算出の注目度): 34.993786158059436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though deep learning-based object detection methods have achieved promising
results on the conventional datasets, it is still challenging to locate objects
from the low-quality images captured in adverse weather conditions. The
existing methods either have difficulties in balancing the tasks of image
enhancement and object detection, or often ignore the latent information
beneficial for detection. To alleviate this problem, we propose a novel
Image-Adaptive YOLO (IA-YOLO) framework, where each image can be adaptively
enhanced for better detection performance. Specifically, a differentiable image
processing (DIP) module is presented to take into account the adverse weather
conditions for YOLO detector, whose parameters are predicted by a small
convolutional neural net-work (CNN-PP). We learn CNN-PP and YOLOv3 jointly in
an end-to-end fashion, which ensures that CNN-PP can learn an appropriate DIP
to enhance the image for detection in a weakly supervised manner. Our proposed
IA-YOLO approach can adaptively process images in both normal and adverse
weather conditions. The experimental results are very encouraging,
demonstrating the effectiveness of our proposed IA-YOLO method in both foggy
and low-light scenarios.
- Abstract(参考訳): 深層学習に基づくオブジェクト検出手法は従来のデータセットで有望な結果を得たが、悪天候下で撮影された低品質の画像からオブジェクトを見つけることは依然として困難である。
既存の手法では、画像強調とオブジェクト検出のタスクのバランスをとるのが困難か、またはしばしば検出に有用な潜在情報を無視する。
この問題を軽減するため,新しい画像適応型YOLO(IA-YOLO)フレームワークを提案する。
具体的には、小さな畳み込みニューラルネットワーク(CNN-PP)によってパラメータが予測されるYOLO検出器の悪天候を考慮した微分可能画像処理(DIP)モジュールを提示する。
我々は、CNN-PPとYOLOv3をエンドツーエンドで共同で学習し、CNN-PPが適切なDIPを学習し、弱い教師付きで検出のための画像を強化することを保証する。
提案したIA-YOLOアプローチは,正常および悪天候条件の両方で適応的に画像を処理できる。
実験結果は,霧と低照度の両方のシナリオで提案したIA-YOLO法の有効性を示した。
関連論文リスト
- SDNIA-YOLO: A Robust Object Detection Model for Extreme Weather Conditions [1.4579344926652846]
本研究では,スタイリゼーションデータ駆動型ニューラルイメージ適応型YOLO(SDNIA-YOLO)を提案する。
開発されたSDNIA-YOLOは、現実世界の霧(RTTS)と低照度(ExDark)テストセットで、少なくとも15%のmAP@.5が大幅に改善された。
実験はまた、極度の気象条件をシミュレートするスタイリングデータの顕著な可能性を強調した。
論文 参考訳(メタデータ) (2024-06-18T08:36:44Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
ヘイズ、雪、雨などの逆の気象条件は、画像品質の低下を招き、深層学習に基づく検知ネットワークの性能低下を招きかねない。
画像復元とオブジェクト検出のタスクをよりうまく統合するために,注目機能融合モジュールを備えた二重経路ネットワークを設計した。
我々はまた,検出ネットワークにヘイズフリーな機能を提供するサブネットワークを提案し,特に,明瞭な特徴抽出サブネットワークと検出ネットワーク間の距離を最小化することにより,検出ネットワークの性能を向上させる。
論文 参考訳(メタデータ) (2024-03-14T09:57:15Z) - FogGuard: guarding YOLO against fog using perceptual loss [5.868532677577194]
FogGuard(フォグガード)は、霧の天候によって引き起こされる課題に対処するために設計された、霧を意識した物体検出ネットワークである。
FogGuardは、YOLOv3をベースラインアルゴリズムとして組み込むことで、シーン内の霧の状態を補償する。
我々のネットワークは、RTTSデータセット上でのYOLOv3の57.78%と比較して、69.43%のmAPを達成した。
論文 参考訳(メタデータ) (2024-03-13T20:13:25Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - PE-YOLO: Pyramid Enhancement Network for Dark Object Detection [9.949687351946038]
ピラミッド拡張ネットワーク (PENet) を提案し, YOLOv3 と結合して PE-YOLO というダークオブジェクト検出フレームワークを構築する。
PE-YOLOはエンドツーエンドのジョイントトレーニングアプローチを採用し、通常の検出損失のみを使用してトレーニングプロセスを簡素化する。
結果:PE-YOLOは、それぞれmAPが78.0%、FPSが53.6%であり、異なる低照度条件下での物体検出に適応できる。
論文 参考訳(メタデータ) (2023-07-20T15:25:55Z) - GDIP: Gated Differentiable Image Processing for Object-Detection in
Adverse Conditions [15.327704761260131]
本稿では,ドメインに依存しないネットワークアーキテクチャであるGated Differentiable Image Processing (GDIP)ブロックを提案する。
提案するGDIPブロックは、下流の物体検出損失から画像を直接拡張することを学ぶ。
いくつかの最先端手法による検出性能の大幅な向上を示す。
論文 参考訳(メタデータ) (2022-09-29T16:43:13Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。