論文の概要: SDNIA-YOLO: A Robust Object Detection Model for Extreme Weather Conditions
- arxiv url: http://arxiv.org/abs/2406.12395v1
- Date: Tue, 18 Jun 2024 08:36:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:56:37.314700
- Title: SDNIA-YOLO: A Robust Object Detection Model for Extreme Weather Conditions
- Title(参考訳): SDNIA-YOLO:極端気象条件におけるロバスト物体検出モデル
- Authors: Yuexiong Ding, Xiaowei Luo,
- Abstract要約: 本研究では,スタイリゼーションデータ駆動型ニューラルイメージ適応型YOLO(SDNIA-YOLO)を提案する。
開発されたSDNIA-YOLOは、現実世界の霧(RTTS)と低照度(ExDark)テストセットで、少なくとも15%のmAP@.5が大幅に改善された。
実験はまた、極度の気象条件をシミュレートするスタイリングデータの顕著な可能性を強調した。
- 参考スコア(独自算出の注目度): 1.4579344926652846
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Though current object detection models based on deep learning have achieved excellent results on many conventional benchmark datasets, their performance will dramatically decline on real-world images taken under extreme conditions. Existing methods either used image augmentation based on traditional image processing algorithms or applied customized and scene-limited image adaptation technologies for robust modeling. This study thus proposes a stylization data-driven neural-image-adaptive YOLO (SDNIA-YOLO), which improves the model's robustness by enhancing image quality adaptively and learning valuable information related to extreme weather conditions from images synthesized by neural style transfer (NST). Experiments show that the developed SDNIA-YOLOv3 achieves significant mAP@.5 improvements of at least 15% on the real-world foggy (RTTS) and lowlight (ExDark) test sets compared with the baseline model. Besides, the experiments also highlight the outstanding potential of stylization data in simulating extreme weather conditions. The developed SDNIA-YOLO remains excellent characteristics of the native YOLO to a great extent, such as end-to-end one-stage, data-driven, and fast.
- Abstract(参考訳): ディープラーニングに基づく現在のオブジェクト検出モデルは、多くの従来のベンチマークデータセットにおいて優れた結果を得たが、その性能は極端な条件下での実際の画像に対して劇的に低下する。
既存の手法では、従来の画像処理アルゴリズムに基づく画像拡張や、ロバストなモデリングのためのカスタマイズとシーン限定の画像処理技術が使用されている。
そこで本研究では,ニューラルスタイル転送(NST)により合成された画像から,画像品質を適応的に向上し,極端気象条件に関連する貴重な情報を学習することにより,モデルの堅牢性を向上させるスタイライズデータ駆動型ニューラルイメージ適応型YOLO(SDNIA-YOLO)を提案する。
試作したSDNIA-YOLOv3は、ベースラインモデルと比較して、現実の霧(RTTS)と低照度(ExDark)テストセットにおいて、少なくとも15%のmAP@.5の改善を実現している。
さらに、この実験は、極度の気象条件をシミュレートするスタイリングデータの優れた可能性も強調している。
開発したSDNIA-YOLOは、エンドツーエンドのワンステージ、データ駆動、高速といった、ネイティブYOLOの優れた特性を保っている。
関連論文リスト
- SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving [48.27575423606407]
フォトリアリスティックな霧画像を生成するために,エンド・ツー・エンドのシミュレーションパイプラインを導入する。
我々は、スカイライトとアクティブな照明条件の両方を特徴とするSynFogという新しい合成霧データセットを提案する。
実験の結果,SynFogで訓練したモデルでは,視覚知覚と検出精度が優れていた。
論文 参考訳(メタデータ) (2024-03-25T18:32:41Z) - DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models [4.7846759259287985]
本稿では,DiffYOLO と呼ばれる YOLO モデルに適用可能なフレームワークを提案する。
具体的には,拡散確率モデルから特徴写像を抽出し,よく訓練されたモデルを強化する。
その結果、このフレームワークはノイズの多いデータセットのパフォーマンスを証明できるだけでなく、高品質なテストデータセットにおける検出結果も証明できることがわかった。
論文 参考訳(メタデータ) (2024-01-03T10:35:35Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) は、セキュリティから医療まで様々な用途で使用される非破壊的評価技術である。
DOLCEは、条件付き拡散モデルを画像として用いた、LACTのための新しいディープモデルベースのフレームワークである。
論文 参考訳(メタデータ) (2022-11-22T15:30:38Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - ART-SS: An Adaptive Rejection Technique for Semi-Supervised restoration
for adverse weather-affected images [24.03416814412226]
SSR法の性能に及ぼすラベルなしデータの影響について検討する。
性能を劣化させる未ラベル画像の拒否を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-17T12:00:31Z) - Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions [34.993786158059436]
本稿では,画像適応型YOLO(IA-YOLO)フレームワークを提案する。
具体的には、YOLO検出器の悪天候を考慮した微分可能画像処理(DIP)モジュールを提示する。
我々は、CNN-PPとYOLOv3をエンドツーエンドで共同で学習し、CNN-PPが適切なDIPを学習し、弱い教師付きで検出のための画像を強化することを保証する。
論文 参考訳(メタデータ) (2021-12-15T12:54:17Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Towards a Unified Approach to Single Image Deraining and Dehazing [16.383099109400156]
降雨効果の新しい物理モデルを開発し,その均一な連続限界として,ヘイズ効果のよく知られた大気散乱モデル(ASM)が自然に現れることを示した。
また,デレーシングとデヘイジングの両方に適した,密集したスケール接続型注意ネットワーク (dscan) を提案する。
論文 参考訳(メタデータ) (2021-03-26T01:35:43Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。