Interactive Visualization and Representation Analysis Applied to Glacier
Segmentation
- URL: http://arxiv.org/abs/2112.08184v1
- Date: Sat, 11 Dec 2021 14:03:53 GMT
- Title: Interactive Visualization and Representation Analysis Applied to Glacier
Segmentation
- Authors: Minxing Zheng (1), Xinran Miao (1), Kris Sankaran (1) ((1) Department
of Statistics, University of Wisconsin - Madison)
- Abstract summary: We apply interactive visualization and representation analysis to guide interpretation of glacier segmentation models.
We build an online interface using the Shiny R package to provide comprehensive error analysis of the predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability has attracted increasing attention in earth observation
problems. We apply interactive visualization and representation analysis to
guide interpretation of glacier segmentation models. We visualize the
activations from a U-Net to understand and evaluate the model performance. We
build an online interface using the Shiny R package to provide comprehensive
error analysis of the predictions. Users can interact with the panels and
discover model failure modes. Further, we discuss how visualization can provide
sanity checks during data preprocessing and model training.
Related papers
- A Visual Tool for Interactive Model Explanation using Sensitivity Analysis [0.0]
We present SAInT, a Python-based tool for exploring and understanding the behavior of Machine Learning (ML) models.<n>Our system supports Human-in-the-Loop attribution (HITL) by enabling users to configure, train, evaluate, and explain models.<n>We demonstrate the system on a classification task predicting survival on the Titanic dataset and show how sensitivity information can guide feature selection and data refinement.
arXiv Detail & Related papers (2025-08-06T09:53:31Z) - Concept-Based Mechanistic Interpretability Using Structured Knowledge Graphs [3.429783703166407]
Our framework enables a global dissection of model behavior by analyzing how high-level semantic attributes emerge, interact, and propagate through internal model components.<n>A key innovation is our visualization platform that we named BAGEL, which presents these insights in a structured knowledge graph.<n>Our framework is model-agnostic, scalable, and contributes to a deeper understanding of how deep learning models generalize (or fail to) in the presence of dataset biases.
arXiv Detail & Related papers (2025-07-08T09:30:20Z) - RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQA is a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding.
Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%.
arXiv Detail & Related papers (2025-03-29T15:50:08Z) - RealCQA-V2 : Visual Premise Proving A Manual COT Dataset for Charts [2.9201864249313383]
We introduce Visual Premise Proving, a novel task tailored to refine the process of chart question answering.
This approach represents a departure from conventional accuracy-based evaluation methods.
A model adept at reasoning is expected to demonstrate proficiency in both data retrieval and the structural understanding of charts.
arXiv Detail & Related papers (2024-10-29T19:32:53Z) - Interactive dense pixel visualizations for time series and model attribution explanations [8.24039921933289]
DAVOTS is an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization.
We apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration.
arXiv Detail & Related papers (2024-08-27T14:02:21Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - Globally Interpretable Graph Learning via Distribution Matching [12.885580925389352]
We aim to answer an important question that is not yet well studied: how to provide a global interpretation for the graph learning procedure?
We formulate this problem as globally interpretable graph learning, which targets on distilling high-level and human-intelligible patterns that dominate the learning procedure.
We propose a novel model fidelity metric, tailored for evaluating the fidelity of the resulting model trained on interpretations.
arXiv Detail & Related papers (2023-06-18T00:50:36Z) - Visual Auditor: Interactive Visualization for Detection and
Summarization of Model Biases [18.434430375939755]
As machine learning (ML) systems become increasingly widespread, it is necessary to audit these systems for biases prior to their deployment.
Recent research has developed algorithms for effectively identifying intersectional bias in the form of interpretable, underperforming subsets (or slices) of the data.
We propose Visual Auditor, an interactive visualization tool for auditing and summarizing model biases.
arXiv Detail & Related papers (2022-06-25T02:48:27Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
Machine learning is a promising approach to visualization recommendation due to its high scalability and representational power.
Our research project aims to address training bias in machine learning visualization recommendation systems by identifying trends in the training data through statistical analysis.
arXiv Detail & Related papers (2022-03-09T18:36:46Z) - AdViCE: Aggregated Visual Counterfactual Explanations for Machine
Learning Model Validation [9.996986104171754]
We introduce AdViCE, a visual analytics tool that aims to guide users in black-box model debug and validation.
The solution rests on two main visual user interface innovations: (1) an interactive visualization that enables the comparison of decisions on user-defined data subsets; (2) an algorithm and visual design to compute and visualize counterfactual explanations.
arXiv Detail & Related papers (2021-09-12T22:52:12Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
We propose the agglomerative analysis to approximate the optimal consensus view.
We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly.
Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN.
arXiv Detail & Related papers (2020-05-12T05:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.