Deep Generative Models for Vehicle Speed Trajectories
- URL: http://arxiv.org/abs/2112.08361v1
- Date: Tue, 14 Dec 2021 20:14:03 GMT
- Title: Deep Generative Models for Vehicle Speed Trajectories
- Authors: Farnaz Behnia and Dominik Karbowski and Vadim Sokolov
- Abstract summary: We show how extensions to deep generative models allow accurate and scalable generation.
Our models are shown to perform well on generating vehicle trajectories using a model trained on GPS data from Chicago metropolitan area.
- Score: 2.5137859989323537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating realistic vehicle speed trajectories is a crucial component in
evaluating vehicle fuel economy and in predictive control of self-driving cars.
Traditional generative models rely on Markov chain methods and can produce
accurate synthetic trajectories but are subject to the curse of dimensionality.
They do not allow to include conditional input variables into the generation
process. In this paper, we show how extensions to deep generative models allow
accurate and scalable generation. Proposed architectures involve recurrent and
feed-forward layers and are trained using adversarial techniques. Our models
are shown to perform well on generating vehicle trajectories using a model
trained on GPS data from Chicago metropolitan area.
Related papers
- Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
We introduce the first large-scale video prediction model in the autonomous driving discipline.
Our model, dubbed GenAD, handles the challenging dynamics in driving scenes with novel temporal reasoning blocks.
It can be adapted into an action-conditioned prediction model or a motion planner, holding great potential for real-world driving applications.
arXiv Detail & Related papers (2024-03-14T17:58:33Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
Feasible Agent Behaviors for Autonomous Driving [19.06020265777298]
Existing simulators rely on system-based behavior models for background vehicles, which cannot capture the complex interactive behaviors in real-world scenarios.
We propose TrajGen, a two-stage trajectory generation framework, which can capture more realistic behaviors directly from human demonstration.
In addition, we develop a data-driven simulator I-Sim that can be used to train reinforcement learning models in parallel based on naturalistic driving data.
arXiv Detail & Related papers (2022-03-31T04:48:29Z) - TransFollower: Long-Sequence Car-Following Trajectory Prediction through
Transformer [44.93030718234555]
We develop a long-sequence car-following trajectory prediction model based on the attention-based Transformer model.
We train and test our model with 112,597 real-world car-following events extracted from the Shanghai Naturalistic Driving Study (SH-NDS)
arXiv Detail & Related papers (2022-02-04T07:59:22Z) - A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering [6.9485501711137525]
We propose a methodology that combines rule-based modeling with data-driven learning.
Our results show that driver models based on our hybrid rule-based and data-driven approach can accurately capture real-world driving behavior.
arXiv Detail & Related papers (2021-08-29T11:07:14Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
This research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data.
A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data.
TrajGAIL is a generative adversarial imitation learning framework for the urban vehicle trajectory generation.
arXiv Detail & Related papers (2020-07-28T13:17:51Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.