The spectrum of qubitized QCD: glueballs in a $S(1080)$ gauge theory
- URL: http://arxiv.org/abs/2112.08482v1
- Date: Wed, 15 Dec 2021 21:04:54 GMT
- Title: The spectrum of qubitized QCD: glueballs in a $S(1080)$ gauge theory
- Authors: Andrei Alexandru, Paulo F. Bedaque, Ruair\'i Brett, Henry Lamm
- Abstract summary: Quantum simulations of QCD require digitization of the infinite-dimensional gluon field.
We present a practical digitization for $SU(3)$ gauge theories via its discrete subgroup $S(1080)$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulations of QCD require digitization of the infinite-dimensional
gluon field. Schemes for doing this with the minimum amount of qubits are
desirable. We present a practical digitization for $SU(3)$ gauge theories via
its discrete subgroup $S(1080)$. Using a modified action that allows classical
simulations down to $a\approx 0.08$ fm, the low-lying glueball spectrum is
computed with percent-level precision at multiple lattice spacings and shown to
extrapolate to the continuum limit $SU(3)$ results. This suggests that this
digitization scheme is sufficient for precision quantum simulations of QCD.
Related papers
- Scalable simulation of random quantum circuits using projected entangled-pair states [0.0]
We use the simple update of projected entangled-pair states (PEPSs) in the Vidal gauge to simulate the states of random quantum circuits (RQCs)
We find the universal scaling behaviors of the state fidelity by performing large-scale simulations for $n leq 104$ or $chi leq 128$ on a conventional CPU.
arXiv Detail & Related papers (2025-04-07T06:47:48Z) - Matrix encoding method in variational quantum singular value decomposition [49.494595696663524]
We propose the variational quantum singular value decomposition based on encoding the elements of the considered $Ntimes N$ matrix into the state of a quantum system of appropriate dimension.<n> Controlled measurement is involved to avoid small success in ancilla measurement.
arXiv Detail & Related papers (2025-03-19T07:01:38Z) - Hybrid Oscillator-Qubit Quantum Processors: Simulating Fermions, Bosons, and Gauge Fields [31.51988323782987]
We develop a hybrid oscillator-qubit processor framework for quantum simulation of strongly correlated fermions and bosons.
This framework gives exact decompositions of particle interactions as well as approximate methods based on the Baker-Campbell Hausdorff formulas.
While our work focusses on an implementation in superconducting hardware, our framework can also be used in trapped ion, and neutral atom hardware.
arXiv Detail & Related papers (2024-09-05T17:58:20Z) - Optimized Quantum Simulation Algorithms for Scalar Quantum Field Theories [0.3394351835510634]
We provide practical simulation methods for scalar field theories on a quantum computer that yield improveds.
We implement our approach using a series of different fault-tolerant simulation algorithms for Hamiltonians.
We find in both cases that the bounds suggest physically meaningful simulations can be performed using on the order of $4times 106$ physical qubits and $1012$ $T$-gates.
arXiv Detail & Related papers (2024-07-18T18:00:01Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Tight Bounds for Quantum State Certification with Incoherent
Measurements [18.566266990940374]
When $sigma$ is the maximally mixed state $frac1d I_d$, this is known as mixedness testing.
We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $rho$ at a time.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - Efficient classical simulation of cluster state quantum circuits with
alternative inputs [0.0]
In cluster state quantum computation input qubits are initialised in the equator' of the Bloch sphere.
Finally the qubits are measured adaptively using $Z$ measurements or measurements of $cos(theta)X + sin(theta)Y$ operators.
arXiv Detail & Related papers (2022-01-19T15:28:48Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Even more efficient quantum computations of chemistry through tensor
hypercontraction [0.6234350105794442]
We describe quantum circuits with only $widetildecal O(N)$ Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of $N$ arbitrary orbitals.
This is the lowest complexity that has been shown for quantum computations of chemistry within an arbitrary basis.
arXiv Detail & Related papers (2020-11-06T18:03:29Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Minimum optical depth multi-port interferometers for approximating any
unitary transformation and any pure state [52.77024349608834]
We show that any pure state, in any dimension $d$, can be prepared with infidelity $le 10-15$ using multi-port interferometers.
The schemes in [Phys. Rev. Lett. textbf73, 58 (1994) and Optica text3, 1460, 1460, only achieves an infidelity in the order of $10-7$ for block-diagonal unitary transformations.
arXiv Detail & Related papers (2020-02-04T15:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.