論文の概要: Multi-Camera LiDAR Inertial Extension to the Newer College Dataset
- arxiv url: http://arxiv.org/abs/2112.08854v1
- Date: Thu, 16 Dec 2021 13:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 16:29:34.828660
- Title: Multi-Camera LiDAR Inertial Extension to the Newer College Dataset
- Title(参考訳): 新しいカレッジデータセットへのマルチカメラLiDAR慣性拡張
- Authors: Lintong Zhang, Marco Camurri and Maurice Fallon
- Abstract要約: 我々は、ニューアー・カレッジ・データセットの拡張として、4.5kmの歩幅のマルチカメラLiDAR慣性データセットを提案する。
このデータセットはまた、10hzのLiDAR周波数で6つの自由度(DoF)基底真理ポーズを提供する。
いくつかのシーケンスは、突然の照明の変化、テクスチャのない表面、攻撃的な動きなどの困難な状況を示す。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present a multi-camera LiDAR inertial dataset of 4.5km
walking distance as an expansion to the Newer College Dataset. The global
shutter multi-camera device is hardware synchronized with the IMU and the
LiDAR. This dataset also provides six Degrees of Freedom (DoF) ground truth
poses, at the LiDAR frequency of 10hz. Three data collections are described and
example usage of multi-camera visual-inertial odometry is demonstrated. This
expansion dataset contains small and narrow passages, large scale open spaces
as well as vegetated areas to test localization and mapping systems.
Furthermore, some sequences present challenging situations such as abrupt
lighting change, textureless surfaces, and aggressive motion. The dataset is
available at: https://ori-drs.github.io/newer-college-dataset
- Abstract(参考訳): 本稿では,新しいカレッジデータセットの拡張として,4.5km歩行距離のマルチカメラLiDAR慣性データセットを提案する。
グローバルシャッターマルチカメラ装置は、IMUとLiDARと同期するハードウェアである。
このデータセットはまた、lidar周波数10hzの6自由度(dof)基底真理のポーズを提供する。
3つのデータコレクションを記述し,マルチカメラ視覚慣性オドメトリの例を示す。
この拡張データセットは、小規模で狭い通路、大規模オープンスペース、および、ローカライゼーションとマッピングシステムをテストするための植生領域を含む。
さらに、突然の照明変化、テクスチャのない表面、アグレッシブな動きといった困難な状況を示す配列もある。
データセットは以下の通りである。 https://ori-drs.github.io/newer-college-dataset。
関連論文リスト
- M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data [1.4053129774629076]
M3LEOはマルチモーダルでマルチラベルの地球観測データセットである。
6つの地理的領域から約17M 4x4 kmのデータチップにまたがる。
論文 参考訳(メタデータ) (2024-06-06T16:30:41Z) - DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping [7.050468075029598]
本研究では,屋内・屋外環境における3次元マッピングのための総合的マルチセンサ・データセットを提案する。
このデータセットは、赤外線カメラ、深度カメラ、LiDAR、および4Dミリ波レーダーからのデータで構成されている。
さまざまなSLAMアルゴリズムを使用してデータセットを処理し、異なるシナリオにおけるアルゴリズムのパフォーマンスの違いを明らかにする。
論文 参考訳(メタデータ) (2024-04-15T09:49:33Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - Kick Back & Relax++: Scaling Beyond Ground-Truth Depth with SlowTV &
CribsTV [50.616892315086574]
本稿では,SlowTV と CribsTV の2つの新しいデータセットを提案する。
これらは、一般公開されているYouTubeビデオから収集された大規模なデータセットで、合計200万のトレーニングフレームが含まれている。
我々はこれらのデータセットを活用し、ゼロショット一般化の難しい課題に取り組む。
論文 参考訳(メタデータ) (2024-03-03T17:29:03Z) - OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation [48.828453331724965]
我々は,Omni-Aperture Fusion Model (OAFuser) を提案する。
提案したOAFuserは,すべての評価指標から4つのUrbanLFデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-28T14:43:27Z) - A9 Intersection Dataset: All You Need for Urban 3D Camera-LiDAR Roadside
Perception [20.10416681832639]
A9 Intersectionデータセットはラベル付きLiDAR点雲と同期カメラ画像で構成されている。
私たちのデータセットは4.8kの画像と57.4k以上の3Dボックスを手動でラベル付けした点雲で構成されています。
論文 参考訳(メタデータ) (2023-06-15T16:39:51Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
デプロイ可能なディープラーニングアーキテクチャの準備とトレーニングには、さまざまなトラフィックシナリオに適したモデルが必要である。
インドなどいくつかの発展途上国で見られる非構造的で複雑な運転レイアウトは、これらのモデルに挑戦している。
我々は、複数のカメラと12kの注釈付き駆動LiDARフレームを備えたLiDARセンサーのマルチモーダルデータからなる新しいデータセットIDD-3Dを構築した。
論文 参考訳(メタデータ) (2022-10-23T23:03:17Z) - LiDARCap: Long-range Marker-less 3D Human Motion Capture with LiDAR
Point Clouds [58.402752909624716]
既存のモーションキャプチャデータセットはほとんどが短距離であり、まだ長距離アプリケーションのニーズに合わない。
我々は,この制限を克服するために,LiDARがより長い範囲で捉えた新しい人間のモーションキャプチャーデータセットLiDARHuman26Mを提案する。
我々のデータセットには、IMUシステムによって取得された人間の動きと同期RGB画像も含まれている。
論文 参考訳(メタデータ) (2022-03-28T12:52:45Z) - PixSet : An Opportunity for 3D Computer Vision to Go Beyond Point Clouds
With a Full-Waveform LiDAR Dataset [0.11726720776908521]
Leddar PixSetは、自動運転研究開発のための新しい公開データセット(dataset.leddartech.com)である。
ピクセットデータセットは、高密度の都市部で記録された97のシーケンスから約29kフレームを含む。
論文 参考訳(メタデータ) (2021-02-24T01:13:17Z) - Cirrus: A Long-range Bi-pattern LiDAR Dataset [35.87501129332217]
我々は、自律運転タスクのための新しい長距離二パターンLiDARパブリックデータセットであるCirrusを紹介する。
我々のプラットフォームには高解像度ビデオカメラと250メートルの有効範囲のLiDARセンサーが装備されている。
Cirrusでは、8つのカテゴリのオブジェクトが、有効範囲全体のLiDAR点雲に完全に注釈付けされている。
論文 参考訳(メタデータ) (2020-12-05T03:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。