論文の概要: Predicting Shallow Water Dynamics using Echo-State Networks with
Transfer Learning
- arxiv url: http://arxiv.org/abs/2112.09182v1
- Date: Thu, 16 Dec 2021 20:14:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-20 15:42:56.275719
- Title: Predicting Shallow Water Dynamics using Echo-State Networks with
Transfer Learning
- Title(参考訳): 伝達学習を用いたエコー状態ネットワークによる浅水の動態予測
- Authors: Xiaoqian Chen and Balasubramanya T. Nadiga and Ilya Timofeyev
- Abstract要約: 本研究では, 訓練過程にない初期条件で浅水方程式の軌道を予測できる貯水池計算の能力を示す。
本稿では, 環境条件を付加した小さな学習段階を, 予測精度の向上に活用するトランスファーラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we demonstrate that reservoir computing can be used to learn
the dynamics of the shallow-water equations. In particular, while most previous
applications of reservoir computing have required training on a particular
trajectory to further predict the evolution along that trajectory alone, we
show the capability of reservoir computing to predict trajectories of the
shallow-water equations with initial conditions not seen in the training
process. However, in this setting, we find that the performance of the network
deteriorates for initial conditions with ambient conditions (such as total
water height and average velocity) that are different from those in the
training dataset. To circumvent this deficiency, we introduce a transfer
learning approach wherein a small additional training step with the relevant
ambient conditions is used to improve the predictions.
- Abstract(参考訳): 本稿では,浅水方程式の動力学を学ぶために貯留層計算を応用できることを実証する。
特に, 従来の貯水池計算の応用では, その軌道のみに沿った進化を予測するために, 特定の軌道上での訓練が必要であったが, 訓練過程にない初期条件で浅海方程式の軌道を予測できる貯水池計算の能力を示す。
しかし, この環境では, トレーニングデータセットと異なる環境条件(総水位, 平均速度など)でネットワークの性能が低下することが判明した。
この不足を回避するために,我々は,関連する環境条件の小さな追加学習ステップを用いて予測を改善するトランスファー学習手法を提案する。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces [78.08947381962658]
タップポイントは急激で、急激で、しばしば非定常力学系の進化における不可逆的な変化である。
我々は、関数空間間のマッピングを学習する新しいリカレントニューラル演算子(RNO)を用いて、そのような非定常系の進化を学習する。
本稿では,物理制約から逸脱をモニタリングすることで,チップ点の予測を行う共形予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T05:42:27Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
熱力学状態方程式を強制するためにニューラルネットワークを制約することは、物理的に一貫性のある予測をもたらす。
論文 参考訳(メタデータ) (2022-12-07T09:31:25Z) - Physics-informed neural networks for pathloss prediction [0.9208007322096533]
提案した学習問題の解法は、少数のニューラルネットワーク層とパラメータを用いて一般化と予測品質を向上させる。
物理インフォームド・フォーミュレーションは、少量のトレーニングデータによるトレーニングと予測を可能にし、幅広い実用的なパスロス予測シナリオにアピールする。
論文 参考訳(メタデータ) (2022-11-23T14:45:48Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
効率的な事前学習としての知識蒸留は、学習した特徴表現を学習済みモデルから将来の下流タスクのための新しい学生モデルに効率的に転送することを目的としている。
提案手法は,3つの下流タスクにおける教師付き事前学習タスクと,10倍少ないデータと5倍少ない事前学習時間を必要とする9つの下流データセットとを比較検討する。
論文 参考訳(メタデータ) (2022-03-10T06:23:41Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
本研究では,データスパース領域におけるストリームフロー予測の一般化性能向上のために,微調整およびパラメータ転送による伝達学習(TL)の方法論について検討する。
本稿では,Long Short-Term Memory(LSTM)という形式で,十分に大きなソースドメインデータセットに適合する標準のリカレントニューラルネットワークを提案する。
本稿では,モデルの空間的および時間的成分を分離し,モデルを一般化する訓練を行うことにより,水文学応用のための伝達学習手法を実装する手法を提案する。
論文 参考訳(メタデータ) (2021-12-06T14:52:53Z) - Model-Free Prediction of Chaotic Systems Using High Efficient
Next-generation Reservoir Computing [4.284497690098487]
低次元および大規模カオス系のモデルフリーな述語を実現するために,新しい貯水池計算のパラダイムを提案する。
ロレンツ方程式と倉本-シヴァシンスキー方程式を力学系の古典的な2つの例として、数値シミュレーションを行った。
その結果,最新の貯水池計算手法よりも予測タスクが優れていることがわかった。
論文 参考訳(メタデータ) (2021-10-19T12:49:24Z) - Inductive Predictions of Extreme Hydrologic Events in The Wabash River
Watershed [15.963061568077567]
我々の単純なモデルはGeoMANのような複雑な注意ネットワークよりもはるかに高速に訓練できることを示す。
また,訓練中に観測された場所とは別の地理的位置において,極端な事象を予測できることを実証した。
この空間的インダクティブな設定により、Wabash Basinデータで訓練されたモデルを使用して、米国および他の地域における極端なイベントを予測できます。
論文 参考訳(メタデータ) (2021-04-25T02:26:09Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。