論文の概要: Model-Free Prediction of Chaotic Systems Using High Efficient
Next-generation Reservoir Computing
- arxiv url: http://arxiv.org/abs/2110.13614v1
- Date: Tue, 19 Oct 2021 12:49:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-11 01:54:32.241195
- Title: Model-Free Prediction of Chaotic Systems Using High Efficient
Next-generation Reservoir Computing
- Title(参考訳): 高効率次世代貯留層計算によるカオスシステムのモデルフリー予測
- Authors: Zhuo Liu and Leisheng Jin
- Abstract要約: 低次元および大規模カオス系のモデルフリーな述語を実現するために,新しい貯水池計算のパラダイムを提案する。
ロレンツ方程式と倉本-シヴァシンスキー方程式を力学系の古典的な2つの例として、数値シミュレーションを行った。
その結果,最新の貯水池計算手法よりも予測タスクが優れていることがわかった。
- 参考スコア(独自算出の注目度): 4.284497690098487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To predict the future evolution of dynamical systems purely from observations
of the past data is of great potential application. In this work, a new
formulated paradigm of reservoir computing is proposed for achieving model-free
predication for both low-dimensional and very large spatiotemporal chaotic
systems. Compared with traditional reservoir computing models, it is more
efficient in terms of predication length, training data set required and
computational expense. By taking the Lorenz and Kuramoto-Sivashinsky equations
as two classical examples of dynamical systems, numerical simulations are
conducted, and the results show our model excels at predication tasks than the
latest reservoir computing methods.
- Abstract(参考訳): 過去のデータの観測から純粋に動的システムの将来の進化を予測することは、非常に有望な応用である。
本研究では,低次元および非常に大きな時空間カオス系のモデルフリー述語を実現するために,新しい貯水池計算パラダイムを提案する。
従来の貯水池計算モデルと比較して、述語長、データセットのトレーニング、計算コストの面では効率的である。
lorenz方程式とkuramoto-sivashinsky方程式を2つの古典的力学系の例とし,数値シミュレーションを行い,本モデルが最新の貯留層計算法よりも述語処理に優れていることを示す。
関連論文リスト
- Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
本稿では,Voronoi Tessellation (DSOVT) フレームワークを用いたスパース観測からの動的システム予測について紹介する。
ボロノイテッセルレーションと深層学習モデルを統合することで、DSOVTは疎く非構造的な観測で力学系の予測に適している。
純粋にデータ駆動モデルと比較して、我々の物理学に基づくアプローチは、明示的に定式化された力学の中で物理法則を学習することができる。
論文 参考訳(メタデータ) (2024-08-31T13:43:52Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
量子貯水池計算技術(QRC)は、相互接続された小さな量子系のアンサンブルを利用するハイブリッド量子古典的フレームワークである。
QRCは, 複雑な非線形力学系を安定かつ高精度に予測できることを示す。
論文 参考訳(メタデータ) (2024-07-31T13:37:04Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Modeling Systems with Machine Learning based Differential Equations [0.0]
微分方程式の解として,力学系の時間連続モデルの設計を提案する。
以上の結果から,本手法は合成データや実験データに有用である可能性が示唆された。
論文 参考訳(メタデータ) (2021-09-09T19:10:46Z) - Reservoir Computing with Diverse Timescales for Prediction of Multiscale
Dynamics [5.172455794487599]
異種リークインテグレータニューロンのリカレントネットワークを用いて,様々な時間スケールの貯水池計算モデルを提案する。
高速なカオス力学系を用いた予測タスクにおいて、提案モデルが既存の標準モデルよりも高いポテンシャルを持つことを示す。
本分析により, 対象力学の各成分の生成に必要な時間尺度は, モデルトレーニングにより, 貯水池力学から適切な, 柔軟に選択されることが明らかとなった。
論文 参考訳(メタデータ) (2021-08-21T06:52:21Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Developing a Hybrid Data-Driven, Mechanistic Virtual Flow Meter -- a
Case Study [0.0]
本研究は、上記の2つの専門分野の技術を生かしたハイブリッド・モデリング手法について検討し、良好な生産チョークをモデル化する。
チョークは、第1原理方程式の単純化されたセットとニューラルネットワークで表現され、弁流係数を推定する。
論文 参考訳(メタデータ) (2020-02-07T12:35:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。