Benchmarking Uncertainty Qualification on Biosignal Classification Tasks
under Dataset Shift
- URL: http://arxiv.org/abs/2112.09196v1
- Date: Thu, 16 Dec 2021 20:42:17 GMT
- Title: Benchmarking Uncertainty Qualification on Biosignal Classification Tasks
under Dataset Shift
- Authors: Tong Xia, Jing Han, Cecilia Mascolo
- Abstract summary: We propose a framework to evaluate the capability of the estimated uncertainty in capturing different types of biosignal dataset shifts.
In particular, we use three classification tasks based on respiratory sounds and electrocardiography signals to benchmark five representative uncertainty qualification methods.
- Score: 16.15816241847314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A biosignal is a signal that can be continuously measured from human bodies,
such as respiratory sounds, heart activity (ECG), brain waves (EEG), etc, based
on which, machine learning models have been developed with very promising
performance for automatic disease detection and health status monitoring.
However, dataset shift, i.e., data distribution of inference varies from the
distribution of the training, is not uncommon for real biosignal-based
applications. To improve the robustness, probabilistic models with uncertainty
qualification are adapted to capture how reliable a prediction is. Yet,
assessing the quality of the estimated uncertainty remains a challenge. In this
work, we propose a framework to evaluate the capability of the estimated
uncertainty in capturing different types of biosignal dataset shifts with
various degrees. In particular, we use three classification tasks based on
respiratory sounds and electrocardiography signals to benchmark five
representative uncertainty qualification methods. Extensive experiments show
that, although Ensemble and Bayesian models could provide relatively better
uncertainty estimations under dataset shifts, all tested models fail to meet
the promise in trustworthy prediction and model calibration. Our work paves the
way for a comprehensive evaluation for any newly developed biosignal
classifiers.
Related papers
- All Thresholds Barred: Direct Estimation of Call Density in Bioacoustic
Data [1.7916003204531015]
We propose a validation scheme for estimating call density in a body of data.
We use these distributions to predict site-level densities, which may be subject to distribution shifts.
arXiv Detail & Related papers (2024-02-23T14:52:44Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification [0.0]
We propose a modified Bootstrapping loss(BS loss) function with Mixup data augmentation strategy.
Our experiments indicated that BS loss with Mixup(BSM) model can halve the Expected Error(ECE) compared to standard data augmentation.
BSM model is able to perceive the semantic distance of out-of-domain data, demonstrating high potential in real-world clinical practice.
arXiv Detail & Related papers (2022-06-09T13:06:51Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.