BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification
- URL: http://arxiv.org/abs/2206.04479v1
- Date: Thu, 9 Jun 2022 13:06:51 GMT
- Title: BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification
- Authors: Shuang Ge, Kehong Yuan, Maokun Han, Desheng Sun, Huabin Zhang, Qiongyu
Ye
- Abstract summary: We propose a modified Bootstrapping loss(BS loss) function with Mixup data augmentation strategy.
Our experiments indicated that BS loss with Mixup(BSM) model can halve the Expected Error(ECE) compared to standard data augmentation.
BSM model is able to perceive the semantic distance of out-of-domain data, demonstrating high potential in real-world clinical practice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence(AI)-assisted method had received much attention in
the risk field such as disease diagnosis. Different from the classification of
disease types, it is a fine-grained task to classify the medical images as
benign or malignant. However, most research only focuses on improving the
diagnostic accuracy and ignores the evaluation of model reliability, which
limits its clinical application. For clinical practice, calibration presents
major challenges in the low-data regime extremely for over-parametrized models
and inherent noises. In particular, we discovered that modeling data-dependent
uncertainty is more conducive to confidence calibrations. Compared with
test-time augmentation(TTA), we proposed a modified Bootstrapping loss(BS loss)
function with Mixup data augmentation strategy that can better calibrate
predictive uncertainty and capture data distribution transformation without
additional inference time. Our experiments indicated that BS loss with
Mixup(BSM) model can halve the Expected Calibration Error(ECE) compared to
standard data augmentation, deep ensemble and MC dropout. The correlation
between uncertainty and similarity of in-domain data is up to -0.4428 under the
BSM model. Additionally, the BSM model is able to perceive the semantic
distance of out-of-domain data, demonstrating high potential in real-world
clinical practice.
Related papers
- Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
Training models with imbalance rate (class density discrepancy) may lead to suboptimal prediction.
We propose a framework for training models for this imbalance issue.
We demonstrate our model's improved performance in real-world medical datasets.
arXiv Detail & Related papers (2022-07-23T00:39:53Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
We investigate trade-off between model refinement and retention of previously learned knowledge.
We propose a simple yet effective approach, adapting Elastic weight consolidation (EWC) using the global batch normalization statistics of the original dataset.
arXiv Detail & Related papers (2020-11-16T16:57:05Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.