Multi-qudit interactions in molecular spins
- URL: http://arxiv.org/abs/2112.09714v2
- Date: Fri, 5 Aug 2022 08:46:07 GMT
- Title: Multi-qudit interactions in molecular spins
- Authors: \'Alvaro G\'omez-Le\'on
- Abstract summary: We study photon-mediated interactions between molecular spin qudits in the dispersive regime of operation.
We derive from a microscopic model the effective interaction between molecular spins.
We calculate the long time dynamics for a pair of interacting molecular spins.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study photon-mediated interactions between molecular spin qudits in the
dispersive regime of operation. We derive from a microscopic model the
effective interaction between molecular spins, including their crystal field
anisotropy (i.e., the presence of non-linear spin terms) and their multi-level
structure. Finally, we calculate the long time dynamics for a pair of
interacting molecular spins using the method of multiple scales analysis. This
allows to find the set of 2-qudit gates that can be realized for a specific
choice of molecular spins and to determine the time required for their
implementation. Our results are relevant for the implementation of logical
gates in general systems of qudits with unequally spaced levels or to determine
an adequate computational subspace to encode and process the information.
Related papers
- Time resolved quantum tomography in molecular spectroscopy by the Maximal Entropy Approach [1.7563879056963012]
A fundamental question emerges: what role, if any, do quantum coherences between molecular electron states play in photochemical reactions?
The Maximal Entropy (MaxEnt) based Quantum State Tomography (QST) approach offers unique advantages in studying molecular dynamics.
We present two methodologies for constructing these operators: one leveraging Molecular Angular Distribution Moments (MADMs) which accurately capture the orientation-dependent vibronic dynamics of molecules.
We achieve a groundbreaking milestone by constructing, for the first time, the entanglement entropy of the electronic subsystem: a metric that was previously inaccessible.
arXiv Detail & Related papers (2024-07-23T16:43:01Z) - Spin/Phonon Dynamics in Single Molecular Magnets: I. quantum embedding [3.100390591580898]
Single molecular magnets (SMMs) and Metal-Organic Frameworks (MOFs) attract significant interest due to their potential in quantum information processing, scalable quantum computing, and extended lifetimes and coherence times.
The limiting factor in these systems is often the spin dephasing caused by interactions and couplings with the vibrational motions of the molecular framework.
This work introduces a systematic projection/embedding scheme to analyze spin-phonon dynamics in molecular magnets.
arXiv Detail & Related papers (2024-07-10T20:49:34Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Enantiodiscrimination of chiral molecules via quantum correlation
function [9.31688452423719]
We propose a method to realize enantiodiscrimination of chiral molecules based on quantum correlation function.
The analytical and numerical results indicate that the left- and right-handed chiral molecules can be discriminated by detecting quantum correlation function.
arXiv Detail & Related papers (2022-01-06T05:29:12Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap [0.0]
We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
arXiv Detail & Related papers (2020-10-22T17:35:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.