論文の概要: Effectiveness of Variable Distance Quantum Error Correcting Codes
- arxiv url: http://arxiv.org/abs/2112.10044v2
- Date: Thu, 19 May 2022 03:21:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 03:10:55.436124
- Title: Effectiveness of Variable Distance Quantum Error Correcting Codes
- Title(参考訳): 可変距離量子誤り訂正符号の有効性
- Authors: Salonik Resch, Ulya R. Karpuzcu
- Abstract要約: 量子プログラムは、非自明な誤りを許容し、なおも使用可能な出力を生成することができることを示す。
さらに,量子プログラムのより敏感な部分を高い距離符号で保護するだけでオーバーヘッドを低減できる可変強度(距離)誤差補正を提案する。
- 参考スコア(独自算出の注目度): 1.0203602318836442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is capable of digitizing quantum noise and
increasing the robustness of qubits. Typically, error correction is designed
with the target of eliminating all errors - making an error so unlikely it can
be assumed that none occur. In this work, we use statistical quantum fault
injection on the quantum phase estimation algorithm to test the sensitivity to
quantum noise events. Our work suggests that quantum programs can tolerate
non-trivial errors and still produce usable output. We show that it may be
possible to reduce error correction overhead by relaxing tolerable error rate
requirements. In addition, we propose using variable strength (distance) error
correction, where overhead can be reduced by only protecting more sensitive
parts of the quantum program with high distance codes.
- Abstract(参考訳): 量子誤差補正は量子ノイズをデジタル化し、量子ビットのロバスト性を高めることができる。
通常、エラー訂正はすべてのエラーを取り除こうという目標で設計されている。
本研究では,量子位相推定アルゴリズムにおける統計的量子障害注入を用いて,量子雑音に対する感度をテストする。
我々の研究は、量子プログラムが非自明な誤りを許容し、なおも使用可能な出力を生成することを示唆している。
許容誤差率要件を緩和することにより,誤り訂正のオーバーヘッドを低減することができることを示す。
さらに,量子プログラムのより敏感な部分を高い距離符号で保護するだけでオーバーヘッドを低減できる可変強度(距離)誤差補正を提案する。
関連論文リスト
- Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code [0.0]
完全なフォールトトレランスを達成する多くの現在の量子誤り訂正符号は、論理量子ビットと物理量子ビットの比率が低く、大きなオーバーヘッドがある。
我々は,[n,n-2,2]]量子誤り検出符号の構成を,単一故障ゲートから任意の誤りを検出する中間点として提案する。
論文 参考訳(メタデータ) (2024-08-27T07:25:36Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum Error Correction with Quantum Autoencoders [0.0]
量子ニューラルネットワークをトレーニングして,能動的検出と誤り訂正のための最適な戦略を学習する方法を示す。
量子オートエンコーダの復号化能力は、特定の状態の保護に限らず、論理的コード空間全体に拡張されることを強調した。
論文 参考訳(メタデータ) (2022-02-01T16:55:14Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
本稿では,量子ゲートと測定誤差を緩和し,量子期待値を計算する統一的なフレームワークを提案する。
基本的な考え方は、異なる順序の量子エラーを線形に組み合わせることで、その逆を近似することで量子エラーの効果をキャンセルすることである。
我々は、異なる量子エラーに対してこの枠組みを検証し、計算精度が大幅に改善されていることを確認する。
論文 参考訳(メタデータ) (2021-11-01T04:16:49Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
安定化符号を用いて、純距離で与えられる多くの量子ビット間の相関関係を持つパウリチャネルを推定できることを示す。
また、量子データシンドローム符号のフレームワーク内での誤差の測定も可能である。
この研究が、デコーダのオンライン適応のような興味深い応用を時間変化ノイズに開放することを期待しています。
論文 参考訳(メタデータ) (2021-07-29T18:01:10Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。