論文の概要: Expression is enough: Improving traffic signal control with advanced
traffic state representation
- arxiv url: http://arxiv.org/abs/2112.10107v1
- Date: Sun, 19 Dec 2021 10:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 16:14:16.159529
- Title: Expression is enough: Improving traffic signal control with advanced
traffic state representation
- Title(参考訳): 表現だけで十分: 高度なトラフィック状態表現によるトラフィック信号制御の改善
- Authors: Liang Zhang, Qiang Wu, Jun Shen, Linyuan L\"u, Jianqing Wu, Bo Du
- Abstract要約: フレキシブルで簡便な新手法であるアドバンストマックスプレッシャー(Advanced-MP)を提案する。
我々はまた、ATSと現在のRLアプローチを組み合わせたRLベースのアルゴリズムテンプレートAdvanced-XLightを開発し、「Advanced-MPLight」と「Advanced-CoLight」の2つのRLアルゴリズムを生成する。
複数の実世界のデータセットに関する総合的な実験によると、(1)Advanced-MPは、デプロイに効率的で信頼性の高いベースラインメソッドよりも優れており、(2)Advanced-MPLightとAdvanced-CoLightは、新しい最先端を実現することができる。
- 参考スコア(独自算出の注目度): 24.917612761503996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, finding fundamental properties for traffic state representation is
more critical than complex algorithms for traffic signal control (TSC).In this
paper, we (1) present a novel, flexible and straightforward method advanced max
pressure (Advanced-MP), taking both running and queueing vehicles into
consideration to decide whether to change current phase; (2) novelty design the
traffic movement representation with the efficient pressure and effective
running vehicles from Advanced-MP, namely advanced traffic state (ATS); (3)
develop an RL-based algorithm template Advanced-XLight, by combining ATS with
current RL approaches and generate two RL algorithms, "Advanced-MPLight" and
"Advanced-CoLight". Comprehensive experiments on multiple real-world datasets
show that: (1) the Advanced-MP outperforms baseline methods, which is efficient
and reliable for deployment; (2) Advanced-MPLight and Advanced-CoLight could
achieve new state-of-the-art. Our code is released on Github.
- Abstract(参考訳): 近年,交通信号制御(TSC)の複雑なアルゴリズムよりも,交通状態表現の基本特性の発見が重要である。
In this paper, we (1) present a novel, flexible and straightforward method advanced max pressure (Advanced-MP), taking both running and queueing vehicles into consideration to decide whether to change current phase; (2) novelty design the traffic movement representation with the efficient pressure and effective running vehicles from Advanced-MP, namely advanced traffic state (ATS); (3) develop an RL-based algorithm template Advanced-XLight, by combining ATS with current RL approaches and generate two RL algorithms, "Advanced-MPLight" and "Advanced-CoLight".
複数の実世界のデータセットに関する総合的な実験によると、(1)Advanced-MPは、デプロイに効率的で信頼性の高いベースラインメソッドよりも優れており、(2)Advanced-MPLightとAdvanced-CoLightは、新しい最先端を実現することができる。
私たちのコードはgithubでリリースされています。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - AD-H: Autonomous Driving with Hierarchical Agents [64.49185157446297]
我々は,ハイレベル命令と低レベル制御信号を中間言語駆動の命令に接続することを提案する。
我々は、AD-Hという階層型マルチエージェント駆動システムを用いて、このアイデアを実装した。
論文 参考訳(メタデータ) (2024-06-05T17:25:46Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Leveraging Queue Length and Attention Mechanisms for Enhanced Traffic
Signal Control Optimization [3.0309252269809264]
本稿では、待ち行列長を効率的な状態表現として利用する交通信号制御(TSC)について述べる。
複数の実世界のデータセットに関する総合的な実験は、我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-12-30T09:24:09Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
交通信号制御(TSC)の問題を解決するために,強化学習(RL)が注目されている。
既存のRLベースの手法は、計算資源の面でコスト効率が良くなく、従来の手法よりも堅牢ではないため、ほとんどデプロイされない。
我々は,RTLに基づくアプローチに基づいて,トレーニングを減らし,複雑さを低減したTSCの適応制御系を構築する方法を示す。
論文 参考訳(メタデータ) (2021-12-04T13:49:58Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
本稿では,交通信号制御のためのモデルベースメタ強化学習フレームワーク(ModelLight)を提案する。
ModelLight内では、道路交差点のためのモデルのアンサンブルと最適化に基づくメタラーニング法を用いて、RLベースのトラヒックライト制御方式のデータ効率を改善する。
実世界のデータセットの実験では、ModelLightが最先端のトラヒックライト制御アルゴリズムより優れていることが示されている。
論文 参考訳(メタデータ) (2021-11-15T20:25:08Z) - Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control
with Partial Detection [0.0]
インテリジェントな信号制御装置は、DQNアルゴリズムをトラフィック光ポリシー最適化に適用し、リアルタイムトラフィックに信号を調整することで、トラフィックの混雑を効率的に軽減する。
しかしながら、文献のほとんどの命題は、交差点の全ての車両が検出される、非現実的なシナリオであると考えている。
本研究では,連結車両を用いた部分的に観測可能な環境下で,信号制御を最適化する深層強化Q-ラーニングモデルを提案する。
論文 参考訳(メタデータ) (2021-09-29T10:42:33Z) - Reinforcement Learning with Latent Flow [78.74671595139613]
Flow of Latents for Reinforcement Learning (Flare)はRLのためのネットワークアーキテクチャであり、潜時ベクトル差分を通じて時間情報を明示的に符号化する。
本研究では,Frareが状態速度に明示的にアクセスすることなく,状態ベースRLの最適性能を回復することを示す。
我々はまた、FlareがDeepMindコントロールベンチマークスイート内のピクセルベースの挑戦的な連続制御タスクで最先端のパフォーマンスを達成することも示しています。
論文 参考訳(メタデータ) (2021-01-06T03:50:50Z) - Reinforcement Learning with Augmented Data [97.42819506719191]
本稿では,ほとんどのRLアルゴリズムを拡張可能なシンプルなプラグイン・アンド・プレイモジュールであるReinforcement Learning with Augmented Data (RAD)を提案する。
本稿では,RLアルゴリズムが複雑な最先端手法より優れていることを示すために,ランダム翻訳,作物,カラージッタ,パッチカットアウト,ランダム畳み込み,振幅スケールなどの拡張法を提案する。
論文 参考訳(メタデータ) (2020-04-30T17:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。