Stable Conformal Prediction Sets
- URL: http://arxiv.org/abs/2112.10224v1
- Date: Sun, 19 Dec 2021 18:53:32 GMT
- Title: Stable Conformal Prediction Sets
- Authors: Eugene Ndiaye
- Abstract summary: conformal prediction is a methodology that allows to estimate a confidence set for $y_n+1$ given $x_n+1$.
While appealing, the computation of such set turns out to be infeasible in general.
We combine conformal prediction techniques with algorithmic stability bounds to derive a prediction set computable with a single model fit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When one observes a sequence of variables $(x_1, y_1), ..., (x_n, y_n)$,
conformal prediction is a methodology that allows to estimate a confidence set
for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the
data is exchangeable. While appealing, the computation of such set turns out to
be infeasible in general, e.g. when the unknown variable $y_{n+1}$ is
continuous. In this paper, we combine conformal prediction techniques with
algorithmic stability bounds to derive a prediction set computable with a
single model fit. We perform some numerical experiments that illustrate the
tightness of our estimation when the sample size is sufficiently large.
Related papers
- Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances [15.990720051907864]
Subset-of-Signals model serves as a benchmark for heteroskedastic mean estimation.
Our algorithm resolves this open question up to logarithmic factors.
Even for $d=2$, our techniques enable rates comparable to knowing the variance of each sample.
arXiv Detail & Related papers (2023-12-05T01:13:10Z) - Conformalization of Sparse Generalized Linear Models [2.1485350418225244]
Conformal prediction method estimates a confidence set for $y_n+1$ that is valid for any finite sample size.
Although attractive, computing such a set is computationally infeasible in most regression problems.
We show how our path-following algorithm accurately approximates conformal prediction sets.
arXiv Detail & Related papers (2023-07-11T08:36:12Z) - Data Structures for Density Estimation [66.36971978162461]
Given a sublinear (in $n$) number of samples from $p$, our main result is the first data structure that identifies $v_i$ in time sublinear in $k$.
We also give an improved version of the algorithm of Acharya et al. that reports $v_i$ in time linear in $k$.
arXiv Detail & Related papers (2023-06-20T06:13:56Z) - Conformal Nucleus Sampling [67.5232384936661]
We assess whether a top-$p$ set is indeed aligned with its probabilistic meaning in various linguistic contexts.
We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.
arXiv Detail & Related papers (2023-05-04T08:11:57Z) - Exact and Approximate Conformal Inference for Multi-Output Regression [0.0]
Conformal inference is used in machine learning to quantify uncertainty associated with predictions.
In this paper, we explore multi-output regression, delivering exact derivations of conformal inference $p$-values.
We also provide both theoretical and empirical evidence of the effectiveness of these methods using both real-world and simulated data.
arXiv Detail & Related papers (2022-10-31T15:41:13Z) - A lower confidence sequence for the changing mean of non-negative right
heavy-tailed observations with bounded mean [9.289846887298854]
A confidence sequence produces an adapted sequence of sets for a predictable parameter sequence with a time-parametric coverage guarantee.
This work constructs a non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero.
arXiv Detail & Related papers (2022-10-20T09:50:05Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
We present a novel estimator with sub-Gaussian convergence.
Our estimator does not require prior knowledge of the variance.
Our estimator construction and analysis gives a framework generalizable to other problems.
arXiv Detail & Related papers (2020-11-17T02:47:24Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
Previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction.
We propose a conditional independence test based algorithm to separate causal variables with a seed variable as priori, and adopt them for stable prediction.
Our algorithm outperforms state-of-the-art methods for stable prediction.
arXiv Detail & Related papers (2020-06-09T06:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.