論文の概要: Training dataset and dictionary sizes matter in BERT models: the case of
Baltic languages
- arxiv url: http://arxiv.org/abs/2112.10553v1
- Date: Mon, 20 Dec 2021 14:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 21:50:41.200173
- Title: Training dataset and dictionary sizes matter in BERT models: the case of
Baltic languages
- Title(参考訳): BERTモデルにおける学習データセットと辞書サイズ : バルト語の場合
- Authors: Matej Ul\v{c}ar and Marko Robnik-\v{S}ikonja
- Abstract要約: 我々はリトアニア語、ラトビア語、英語の3言語モデルLitLat BERTとエストニア語の単言語モデルEst-RoBERTaを訓練する。
提案手法は,エンティティ認識,依存性解析,パート・オブ・音声タグ付け,単語類似処理の4つのダウンストリームタスクにおいて,その性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large pretrained masked language models have become state-of-the-art
solutions for many NLP problems. While studies have shown that monolingual
models produce better results than multilingual models, the training datasets
must be sufficiently large. We trained a trilingual LitLat BERT-like model for
Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for
Estonian. We evaluate their performance on four downstream tasks: named entity
recognition, dependency parsing, part-of-speech tagging, and word analogy. To
analyze the importance of focusing on a single language and the importance of a
large training set, we compare created models with existing monolingual and
multilingual BERT models for Estonian, Latvian, and Lithuanian. The results
show that the newly created LitLat BERT and Est-RoBERTa models improve the
results of existing models on all tested tasks in most situations.
- Abstract(参考訳): マスク付き大規模言語モデルは、多くのNLP問題に対する最先端のソリューションとなっている。
研究により、単言語モデルは多言語モデルよりも優れた結果をもたらすことが示されたが、トレーニングデータセットは十分に大きくなければならない。
我々はリトアニア語、ラトビア語、英語のLitLat BERT様モデルとエストニア語のための単言語Est-RoBERTaモデルを訓練した。
提案手法は,エンティティ認識,依存性解析,パート・オブ・音声タグ付け,単語類似処理の4つのダウンストリームタスクにおける性能を評価する。
単一言語にフォーカスすることの重要性と大規模なトレーニングセットの重要性を分析するため、エストニア、ラトビア、リトアニアの既存の単言語および多言語BERTモデルと比較した。
その結果、新しいLitLat BERTとEst-RoBERTaモデルは、ほとんどの状況でテストされたすべてのタスクにおいて、既存のモデルの結果を改善することがわかった。
関連論文リスト
- Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - EstBERT: A Pretrained Language-Specific BERT for Estonian [0.3674863913115431]
本稿では,エストニア語のための言語固有BERTモデルであるEstBERTについて述べる。
最近の研究はエストニアのタスクにおける多言語BERTモデルを評価し、ベースラインを上回る結果を得た。
EstBERTに基づくモデルは、6つのタスクのうち5つのタスクにおいて多言語BERTモデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-11-09T21:33:53Z) - Towards Fully Bilingual Deep Language Modeling [1.3455090151301572]
両言語のパフォーマンスを損なうことなく、2つの遠隔関連言語に対してバイリンガルモデルを事前学習することが可能かを検討する。
フィンランド英語のバイリンガルBERTモデルを作成し、対応するモノリンガルモデルを評価するために使用されるデータセットの性能を評価する。
我々のバイリンガルモデルは、GLUE上のGoogleのオリジナル英語BERTと同等に動作し、フィンランドのNLPタスクにおける単言語フィンランドBERTのパフォーマンスとほぼ一致します。
論文 参考訳(メタデータ) (2020-10-22T12:22:50Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Evaluating Multilingual BERT for Estonian [0.8057006406834467]
複数のNLPタスクにおいて,多言語BERT,多言語蒸留BERT,XLM,XLM-RoBERTaの4つのモデルを評価する。
この結果から,多言語BERTモデルはエストニアの異なるNLPタスクでうまく一般化できることが示唆された。
論文 参考訳(メタデータ) (2020-10-01T14:48:31Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
これまでの研究は、bitextで微調整することで機械翻訳システムを作成できることを実証してきた。
多言語翻訳モデルは多言語微調整により作成可能であることを示す。
事前訓練されたモデルは、性能を損なうことなく、追加の言語を組み込むように拡張できることを実証する。
論文 参考訳(メタデータ) (2020-08-02T05:36:55Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
ウィキペディアデータから言語固有のBERTモデルを作成するための、単純で完全に自動化されたパイプラインを導入します。
我々は,これらのモデルの有効性を,Universal Dependenciesデータに基づく最先端のUDifyを用いて評価する。
論文 参考訳(メタデータ) (2020-06-02T11:57:53Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z) - Structure-Level Knowledge Distillation For Multilingual Sequence
Labeling [73.40368222437912]
本稿では,複数の単言語モデルの構造的知識を統一多言語モデル(学生)に蒸留することにより,単言語モデルと統一多言語モデルとのギャップを低減することを提案する。
25のデータセットを用いた4つの多言語タスクの実験により、我々のアプローチはいくつかの強いベースラインを上回り、ベースラインモデルと教師モデルの両方よりも強力なゼロショット一般化性を有することが示された。
論文 参考訳(メタデータ) (2020-04-08T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。