Learned ISTA with Error-based Thresholding for Adaptive Sparse Coding
- URL: http://arxiv.org/abs/2112.10985v2
- Date: Tue, 19 Dec 2023 05:51:09 GMT
- Title: Learned ISTA with Error-based Thresholding for Adaptive Sparse Coding
- Authors: Ziang Li, Kailun Wu, Yiwen Guo, and Changshui Zhang
- Abstract summary: We propose an error-based thresholding mechanism for learned ISTA (LISTA)
We show that the proposed EBT mechanism well disentangles the learnable parameters in the shrinkage functions from the reconstruction errors.
- Score: 58.73333095047114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drawing on theoretical insights, we advocate an error-based thresholding
(EBT) mechanism for learned ISTA (LISTA), which utilizes a function of the
layer-wise reconstruction error to suggest a specific threshold for each
observation in the shrinkage function of each layer. We show that the proposed
EBT mechanism well disentangles the learnable parameters in the shrinkage
functions from the reconstruction errors, endowing the obtained models with
improved adaptivity to possible data variations. With rigorous analyses, we
further show that the proposed EBT also leads to a faster convergence on the
basis of LISTA or its variants, in addition to its higher adaptivity. Extensive
experimental results confirm our theoretical analyses and verify the
effectiveness of our methods.
Related papers
- Causal Rule Forest: Toward Interpretable and Precise Treatment Effect Estimation [0.0]
Causal Rule Forest (CRF) is a novel approach to learning hidden patterns from data and transforming the patterns into interpretable multi-level Boolean rules.
By training the other interpretable causal inference models with data representation learned by CRF, we can reduce the predictive errors of these models in estimating Heterogeneous Treatment Effects (HTE) and Conditional Average Treatment Effects (CATE)
Our experiments underscore the potential of CRF to advance personalized interventions and policies.
arXiv Detail & Related papers (2024-08-27T13:32:31Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Neurally Augmented ALISTA [15.021419552695066]
We introduce Neurally Augmented ALISTA, in which an LSTM network is used to compute step sizes and thresholds individually for each target vector during reconstruction.
We show that our approach further improves empirical performance in sparse reconstruction, in particular outperforming existing algorithms by an increasing margin as the compression ratio becomes more challenging.
arXiv Detail & Related papers (2020-10-05T11:39:49Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli dropout (LBD) is a new model-agnostic dropout scheme that considers the dropout rates as parameters jointly optimized with other model parameters.
LBD leads to improved accuracy and uncertainty estimates in image classification and semantic segmentation.
arXiv Detail & Related papers (2020-02-12T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.