Towards Understanding the Optimization Mechanisms in Deep Learning
- URL: http://arxiv.org/abs/2503.23016v1
- Date: Sat, 29 Mar 2025 08:46:13 GMT
- Title: Towards Understanding the Optimization Mechanisms in Deep Learning
- Authors: Binchuan Qi, Wei Gong, Li Li,
- Abstract summary: In this paper, we adopt a distribution estimation perspective to explore the mechanisms of supervised classification using deep neural networks.<n>For the latter, we provide theoretical insights into mechanisms such as over- and probability randomization.
- Score: 5.281849820329249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we adopt a probability distribution estimation perspective to explore the optimization mechanisms of supervised classification using deep neural networks. We demonstrate that, when employing the Fenchel-Young loss, despite the non-convex nature of the fitting error with respect to the model's parameters, global optimal solutions can be approximated by simultaneously minimizing both the gradient norm and the structural error. The former can be controlled through gradient descent algorithms. For the latter, we prove that it can be managed by increasing the number of parameters and ensuring parameter independence, thereby providing theoretical insights into mechanisms such as over-parameterization and random initialization. Ultimately, the paper validates the key conclusions of the proposed method through empirical results, illustrating its practical effectiveness.
Related papers
- Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
This article addresses the challenge of parameter calibration in models where the likelihood function is not analytically available.
We propose a gradient-based simulated parameter estimation framework, leveraging a multi-time scale that tackles the issue of ratio bias in both maximum likelihood estimation and posterior density estimation problems.
arXiv Detail & Related papers (2024-11-20T02:46:15Z) - Extended convexity and smoothness and their applications in deep learning [5.281849820329249]
This paper aims to elucidate the mechanisms of non-smooth optimization in deep learning.
Our analysis demonstrates that the gradient descent (SGD) algorithm can effectively minimize the empirical risk.
arXiv Detail & Related papers (2024-10-08T08:40:07Z) - Probability Distribution Learning and Its Application in Deep Learning [0.0]
This paper introduces a novel theoretical learning framework, termed probability distribution learning (PD learning)<n>PD learning focuses on learning the underlying probability distribution, which is modeled as a random variable within the probability simplex.
arXiv Detail & Related papers (2024-06-09T06:49:22Z) - Error Bounds of Supervised Classification from Information-Theoretic Perspective [0.0]
We explore bounds on the expected risk when using deep neural networks for supervised classification from an information theoretic perspective.
We introduce model risk and fitting error, which are derived from further decomposing the empirical risk.
arXiv Detail & Related papers (2024-06-07T01:07:35Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Guiding Neural Network Initialization via Marginal Likelihood
Maximization [0.9137554315375919]
We leverage the relationship between neural network and Gaussian process models having corresponding activation and covariance functions to infer the hyper- parameter values.
Our experiment shows that marginal consistency provides recommendations that yield near-optimal prediction performance on MNIST classification task.
arXiv Detail & Related papers (2020-12-17T21:46:09Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.