論文の概要: Efficient Registration of Forest Point Clouds by Global Matching of
Relative Stem Positions
- arxiv url: http://arxiv.org/abs/2112.11121v1
- Date: Tue, 21 Dec 2021 11:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 14:47:12.468775
- Title: Efficient Registration of Forest Point Clouds by Global Matching of
Relative Stem Positions
- Title(参考訳): 相対ステム位置のグローバルマッチングによる森林点雲の効率的な登録
- Authors: Xufei Wang, Zexin Yang, Xiaojun Cheng, Jantien Stoter, Wenbin Xu,
Zhenlun Wu, and Liangliang Nan
- Abstract要約: 本稿では,森林点雲の自動登録方法を提案する。
我々のアルゴリズムは、個々の木属性を余分に必要とせず、環境内の木数に対して線形複雑である。
本手法は, 登録精度とロバスト性に関する最先端手法よりも優れており, 既存の技術よりも効率性が高い。
- 参考スコア(独自算出の注目度): 3.0416182015106474
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Registering point clouds of forest environments is an essential prerequisite
for LiDAR applications in precision forestry. State-of-the-art methods for
forest point cloud registration require the extraction of individual tree
attributes, and they have an efficiency bottleneck when dealing with point
clouds of real-world forests with dense trees. We propose an automatic, robust,
and efficient method for the registration of forest point clouds. Our approach
first locates tree stems from raw point clouds and then matches the stems based
on their relative spatial relationship to determine the registration
transformation. In contrast to existing methods, our algorithm requires no
extra individual tree attributes and has linear complexity to the number of
trees in the environment, allowing it to align point clouds of large forest
environments. Extensive experiments have revealed that our method is superior
to the state-of-the-art methods regarding registration accuracy and robustness,
and it significantly outperforms existing techniques in terms of efficiency.
Besides, we introduce a new benchmark dataset that complements the very few
existing open datasets for the development and evaluation of registration
methods for forest point clouds.
- Abstract(参考訳): 森林環境の点雲の登録は、精密林業におけるLiDAR応用の必須条件である。
森林点雲登録の最先端手法では,個々の樹木属性の抽出が必要であり,密林のある実世界の森林の点雲を扱う際の効率のボトルネックとなる。
本研究では,森林点雲の登録のための自動的かつロバストで効率的な手法を提案する。
提案手法は,まず原点雲から樹幹を抽出し,その相対的空間関係に基づいて樹幹をマッチングし,登録変換を決定する。
既存の手法とは対照的に,本アルゴリズムは個々の木属性を余分に必要とせず,環境内の木数に線形に複雑であり,森林環境の点雲を整列させることができる。
広範な実験により,本手法は登録精度とロバスト性に関して最先端の手法よりも優れており,効率面では既存の手法を大きく上回っていることが明らかとなった。
さらに,森林点雲の登録方法の開発と評価のために,既存の数少ないオープンデータセットを補完する新しいベンチマークデータセットを導入する。
関連論文リスト
- PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - Towards general deep-learning-based tree instance segmentation models [0.0]
木を分割する学習の可能性を示す深層学習法が提案されている。
文献で見られる7つの多様なデータセットを使用して、ドメインシフトの下での一般化能力に関する洞察を得る。
その結果, 針葉樹が支配するスパース点雲から決定的に支配する高分解能点雲への一般化が可能であることが示唆された。
論文 参考訳(メタデータ) (2024-05-03T12:42:43Z) - Training point-based deep learning networks for forest segmentation with synthetic data [0.0]
我々は,人工林のシーンを手続き的に生成する現実的なシミュレータを開発した。
森林分断のための最先端の深層学習ネットワークの比較研究を行った。
論文 参考訳(メタデータ) (2024-03-21T04:01:26Z) - Automated forest inventory: analysis of high-density airborne LiDAR
point clouds with 3D deep learning [16.071397465972893]
ForAINetは多様な森林タイプや地理的地域をまたいでセグメンテーションを行うことができる。
システムは、調査ドローンを使用して5つの国で取得されたポイントクラウドのデータセットであるFor-Instanceでテストされている。
論文 参考訳(メタデータ) (2023-12-22T21:54:35Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
森林点雲のツリーインスタンスセグメンテーションのためのディープラーニングに基づくアプローチであるTreeLearnを提案する。
TreeLearnは、すでにセグメンテーションされたポイントクラウドにデータ駆動でトレーニングされているため、事前に定義された機能やアルゴリズムに依存しない。
我々は、Lidar360ソフトウェアを使って6665本の木の森林点雲上でTreeLearnを訓練した。
論文 参考訳(メタデータ) (2023-09-15T15:20:16Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
ポイントクラウドデータ処理の大きな問題は、ローカルリージョンから有用な情報を抽出することだ。
従来の研究は、局所的な形状情報を符号化する地域におけるエッジ間の関係を無視していた。
本稿では,Adaptive Edge-to-Edge Interaction Learningモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-20T07:10:14Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z) - Automatic marker-free registration of tree point-cloud data based on
rotating projection [23.08199833637939]
本研究では,1本の木を複数スキャンした点クラウドデータの登録のための粗大な自動登録手法を提案する。
粗い登録では、各スキャンによって生成された点雲を球面に投影して一連の2次元画像を生成する。
対応する特徴点対は、これらの一連の2次元画像から抽出される。
微細な登録では、点雲データスライシングとフィッティング法を用いて、対応する中心茎と分岐中心を抽出する。
論文 参考訳(メタデータ) (2020-01-30T06:53:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。