Modified coherence of quantum spins in a damped pure-dephasing model
- URL: http://arxiv.org/abs/2112.11711v2
- Date: Fri, 11 Feb 2022 04:57:52 GMT
- Title: Modified coherence of quantum spins in a damped pure-dephasing model
- Authors: Mattias T. Johnsson, Ben Q. Baragiola, Thomas Volz, and Gavin K.
Brennen
- Abstract summary: We consider a spin-$j$ particle coupled to a structured bath of bosonic modes that decay into thermal baths.
In the heavily overdamped regime, spin coherences are preserved due to a quantum Zeno affect.
We show that our solution applies to defects in solid-state systems, such as NV$-$ centres in diamond.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a spin-$j$ particle coupled to a structured bath of bosonic modes
that decay into thermal baths. We obtain an analytic expression for the reduced
spin state and use it to investigate non-Markovian spin dynamics. In the
heavily overdamped regime, spin coherences are preserved due to a quantum Zeno
affect. We extend the solution to two spins and include coupling between the
modes, which can be leveraged for preservation of the symmetric spin subspace.
For many spins, we find that inter-mode coupling gives rise to a privileged
symmetric mode gapped from the other modes. This provides a handle to
selectively address that privileged mode for quantum control of the collective
spin. Finally, we show that our solution applies to defects in solid-state
systems, such as NV$^{-}$ centres in diamond.
Related papers
- Quantum Phonon Dynamics Induced Spontaneous Spin-Orbit Coupling [9.748987642024122]
A spin-dependent electron-phonon coupling model is investigated on a half-filled square lattice.
Spin-orbit coupling emerges as an order in the ground state for any $lambda$ in the adiabatic limit.
Our work opens up the possibility of hidden spin-orbit coupling in materials where it is otherwise forbidden by lattice symmetry.
arXiv Detail & Related papers (2024-10-22T12:19:52Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Unitary and efficient spin squeezing in cavity optomechanics [12.2314512523428]
We propose an approach to produce spin squeezed states of a large number of nitrogen-vacancy centers in diamond nanostructures coupled to an optical cavity.
We found that, under certain conditions, our method has the potential to enhance the spin-spin nonlinear interactions.
Taking into account the noise effects of spin dephasing and relaxtion, we found that the proposed approaches are robust against imperfections.
arXiv Detail & Related papers (2024-01-28T03:19:26Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Spin squeezing generated by the anisotropic central spin model [0.28101605533398166]
We investigate the spin squeezing and the quantum phase transition in an anisotropic central spin system.
We find that this kind of central spin systems can be mapped to the anisotropic Lipkin-Meshkov-Glick model in the limit where the ratio of transition between the central spin and the spin bath tends towards infinity.
This work offers a promising scheme for generating spin-squeezed state and paves the way for potential advancements in quantum sensing.
arXiv Detail & Related papers (2023-11-19T12:11:56Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization [15.902631337426316]
We derive an exact solution for the steady state of a setup where two $XX$-coupled $N$-qubit spin chains are subject to boundary Rabi drives.
For a wide range of parameters, this system has a pure entangled steady state.
arXiv Detail & Related papers (2023-07-18T17:59:15Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.