Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization
- URL: http://arxiv.org/abs/2307.09482v2
- Date: Mon, 20 May 2024 17:00:19 GMT
- Title: Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization
- Authors: Andrew Lingenfelter, Mingxing Yao, Andrew Pocklington, Yu-Xin Wang, Abdullah Irfan, Wolfgang Pfaff, Aashish A. Clerk,
- Abstract summary: We derive an exact solution for the steady state of a setup where two $XX$-coupled $N$-qubit spin chains are subject to boundary Rabi drives.
For a wide range of parameters, this system has a pure entangled steady state.
- Score: 15.902631337426316
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We derive an exact solution for the steady state of a setup where two $XX$-coupled $N$-qubit spin chains (with possibly non-uniform couplings) are subject to boundary Rabi drives, and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multi-qubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative $XX$ spin chain that maps to an interacting fermionic model. The non-equilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED.
Related papers
- Hierarchy of degenerate stationary states in a boundary-driven dipole-conserving spin chain [0.0]
Kinetically constrained spin chains serve as a prototype for structured ergodicity breaking in isolated quantum systems.
We show that such a system exhibits a hierarchy of degenerate steady states when driven by incoherent pump and loss at the boundary.
arXiv Detail & Related papers (2024-11-05T18:03:02Z) - Entangling distant systems via universal nonadiabatic passage [0.0]
We derive universal nonadiabatic passages in an $M+N$-dimensional discrete system.
In applications, a transitionless dynamics determined by the von Neumann equation with the time-dependent system Hamiltonian can be formulated to entangle distant qubits.
Our work develops a full-fledged theory for nonadiabatic state engineering in quantum information processing.
arXiv Detail & Related papers (2024-10-31T07:43:28Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Modified coherence of quantum spins in a damped pure-dephasing model [0.0]
We consider a spin-$j$ particle coupled to a structured bath of bosonic modes that decay into thermal baths.
In the heavily overdamped regime, spin coherences are preserved due to a quantum Zeno affect.
We show that our solution applies to defects in solid-state systems, such as NV$-$ centres in diamond.
arXiv Detail & Related papers (2021-12-22T07:42:28Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Controlling stable tunneling in a non-Hermitian spin-orbit coupled
bosonic junction [2.318181329756016]
We study how to apply a periodic driving field to control stable spin tunneling in a non-Hermitian spin-orbit coupled bosonic system.
We find that the stable spin-flipping tunneling is preferentially suppressed with the increase of gain-loss strength.
The results could be useful for the experiments of controlling stable spin transportation in a non-Hermitian spin-orbit coupled system.
arXiv Detail & Related papers (2020-05-10T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.