Non-Abelian dynamics on a cube: improving quantum compilation through qudit-based simulations
- URL: http://arxiv.org/abs/2506.10945v1
- Date: Thu, 12 Jun 2025 17:49:08 GMT
- Title: Non-Abelian dynamics on a cube: improving quantum compilation through qudit-based simulations
- Authors: Jacky Jiang, Natalie Klco, Olivia Di Matteo,
- Abstract summary: Recent developments in mapping lattice gauge theories relevant to the Standard Model onto digital quantum computers identify scalable paths with well-defined quantum compilation challenges toward the continuum.<n>We address the simulation of SU(2) lattice gauge theory using qudit registers to encode the digitized gauge field.<n>We demonstrate an end-to-end simulation of real-time, qutrit-digitized SU(2) dynamics on a cube.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments in mapping lattice gauge theories relevant to the Standard Model onto digital quantum computers identify scalable paths with well-defined quantum compilation challenges toward the continuum. As an entry point to these challenges, we address the simulation of SU(2) lattice gauge theory. Using qudit registers to encode the digitized gauge field, we provide quantum resource estimates, in terms of elementary qudit gates, for arbitrarily high local gauge field truncations. We then demonstrate an end-to-end simulation of real-time, qutrit-digitized SU(2) dynamics on a cube. Through optimizing the simulation, we improved circuit decompositions for uniformly-controlled qudit rotations, an algorithmic primitive for general applications of quantum computing. The decompositions also apply to mixed-dimensional qudit systems, which we found advantageous for compiling lattice gauge theory simulations. Furthermore, we parallelize the evolution of opposite faces in anticipation of similar opportunities arising in three-dimensional lattice volumes. This work details an ambitious executable for future qudit hardware and attests to the value of codesign strategies between lattice gauge theory simulation and quantum compilation.
Related papers
- Quantum Circuits for SU(3) Lattice Gauge Theory [0.0]
We consider pure $SU(3)$ gauge theory in two and three spatial dimensions.<n>We build circuits for simulating time evolution on arbitrary lattice volumes.
arXiv Detail & Related papers (2025-03-11T20:13:58Z) - Trapped-ion quantum simulation of the Fermi-Hubbard model as a lattice gauge theory using hardware-aware native gates [0.3370543514515051]
Trotterization-based quantum simulations have shown promise, but implementations on current hardware are limited by noise.
A mapping of the Fermi-Hubbard model to a Z2 LGT was recently proposed that restricts the dynamics to a subspace protected by additional symmetries, and its ability for post-selection error mitigation was verified through noisy classical simulations.
In particular, a novel combination of iteratively preconditioned gradient descent (IPG) and subsystem von Neumann Entropy compression reduces the 2-qubit gate count of FHM quantum simulation by 35%.
arXiv Detail & Related papers (2024-11-12T13:21:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term
quantum simulator: variational quantum optimization, confinement, and
topological order [0.0]
We propose an implementation of a two-dimensional $mathbbZ$ lattice gauge theory model on a shallow quantum circuit.
The ground state preparation is numerically analyzed on a small lattice with a variational quantum algorithm.
Our work shows that variational quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations of lattice gauge theories.
arXiv Detail & Related papers (2021-12-22T10:45:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.