Neural-Symbolic Integration for Interactive Learning and Conceptual
Grounding
- URL: http://arxiv.org/abs/2112.11805v1
- Date: Wed, 22 Dec 2021 11:24:48 GMT
- Title: Neural-Symbolic Integration for Interactive Learning and Conceptual
Grounding
- Authors: Benedikt Wagner, Artur d'Avila Garcez
- Abstract summary: We propose neural-symbolic integration for abstract concept explanation and interactive learning.
Interaction with the user confirms or rejects a revision of the neural model.
The approach is illustrated using the Logic Network framework alongside Concept Activation Vectors and applied to a Conal Neural Network.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose neural-symbolic integration for abstract concept explanation and
interactive learning. Neural-symbolic integration and explanation allow users
and domain-experts to learn about the data-driven decision making process of
large neural models. The models are queried using a symbolic logic language.
Interaction with the user then confirms or rejects a revision of the neural
model using logic-based constraints that can be distilled into the model
architecture. The approach is illustrated using the Logic Tensor Network
framework alongside Concept Activation Vectors and applied to a Convolutional
Neural Network.
Related papers
- Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
achieving human-like reasoning and interpretability in AI systems remains a substantial challenge.
The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI.
This paper explores recent advancements in neural-symbolic integration based on Knowledge Graphs.
arXiv Detail & Related papers (2024-05-06T14:40:50Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - On the Transition from Neural Representation to Symbolic Knowledge [2.2528422603742304]
We propose a Neural-Symbolic Transitional Dictionary Learning (TDL) framework that employs an EM algorithm to learn a transitional representation of data.
We implement the framework with a diffusion model by regarding the decomposition of input as a cooperative game.
We additionally use RL enabled by the Markovian of diffusion models to further tune the learned prototypes.
arXiv Detail & Related papers (2023-08-03T19:29:35Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
We propose a list of desirable criteria for neuro symbolic systems and examine how some of the existing approaches address these criteria.
We then propose an extension to annotated generalized logic that allows for the creation of an equivalent neural architecture.
Unlike previous approaches that rely on continuous optimization for the training process, our framework is designed as a binarized neural network that uses discrete optimization.
arXiv Detail & Related papers (2023-02-23T17:39:46Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
We propose a framework that combines the pattern recognition abilities of neural networks with symbolic reasoning and background knowledge.
We take inspiration from the 'neural algorithmic reasoning' approach [DeepMind 2020] and use problem-specific background knowledge.
We test this on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive with human performance.
arXiv Detail & Related papers (2022-09-19T04:03:20Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
This paper presents a complete neuro-symbolic method for processing images into objects, learning relations and logical rules.
The main contribution is a differentiable layer in a deep learning architecture from which symbolic relations and rules can be extracted.
We demonstrate that our model scales beyond state-of-the-art symbolic learners and outperforms deep relational neural network architectures.
arXiv Detail & Related papers (2021-06-14T15:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.