Modifying quantum optical states by zero-photon subtraction
- URL: http://arxiv.org/abs/2112.11990v1
- Date: Wed, 22 Dec 2021 16:08:34 GMT
- Title: Modifying quantum optical states by zero-photon subtraction
- Authors: C.M. Nunn, J.D. Franson, and T.B. Pittman
- Abstract summary: We experimentally investigate zero-photon subtraction (ZPS) using a wide variety of input states and conditional measurements.
We find that SPS and ZPS can exhibit complementary behavior depending on the photon statistics of the input states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The process of single-photon subtraction (SPS) is known to dramatically alter
the properties of certain quantum optical states. Somewhat surprisingly,
subtracting zero photons can also modify quantum states and has practical
applications in quantum communication. Here we experimentally investigate
zero-photon subtraction (ZPS) using a wide variety of input states and
conditional measurements based on actively detecting zero photons in one output
port of a variable beamsplitter. We find that SPS and ZPS can exhibit
complementary behavior depending on the photon statistics of the input states,
and highlight deeper connections with Mandel's $Q$-parameter for classifying
quantum states.
Related papers
- Subtraction and Addition of Propagating Photons by Two-Level Emitters [2.321156230142032]
We show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes.
We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model.
arXiv Detail & Related papers (2024-04-18T16:55:33Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Transforming photon statistics through zero-photon subtraction [0.0]
We show that ZPS can be used to transform certain super-Poissonian states into sub-Poissonian states.
This effect leads to a new set of non-classicality criteria that can be experimentally tested.
arXiv Detail & Related papers (2023-01-25T17:07:52Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Nonlinear down-conversion in a single quantum dot [0.0]
Photonic quantum technologies are on the verge of becoming commercially available.
One crucial building block are tailored nanoscale integratable quantum light sources.
We show an emitter-independent method to tailor and control the properties of the single photon emission.
arXiv Detail & Related papers (2021-05-26T08:31:16Z) - Artificial coherent states of light by multi-photon interference in a
single-photon stream [0.0]
Coherent optical states consist of a quantum superposition of different photon number (Fock) states.
We create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states.
The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons.
arXiv Detail & Related papers (2020-10-29T10:40:33Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.